Cu粉预混偏高岭土增强Al6082超声搅拌复合材料力学特性及拉伸断裂模式分析

IF 1.2 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Renjin J Bright, P. Hariharasakthisudhan
{"title":"Cu粉预混偏高岭土增强Al6082超声搅拌复合材料力学特性及拉伸断裂模式分析","authors":"Renjin J Bright, P. Hariharasakthisudhan","doi":"10.3221/igf-esis.62.29","DOIUrl":null,"url":null,"abstract":"The major drawback observed in the ceramic particles reinforced aluminium matrix composites (AMCs) is the reduction of ductility. Incorporating fine metallic particles along with the ceramic reinforcements in the aluminium matrix tends to improve the ductility of the AMCs. This work highlights the effects of dispersing micro (5-10 μm) copper (Cu) particles along with the nano (100-400 nm) Metakaolin particles in the Al6082 matrix. The Metakaolin particles were premixed with Cu powder by means of manual stirring followed by ball milling before embedding into the Al6082 matrix. The total reinforcement composition was maintained as 7.5 wt.% in which 2.5 wt.% consisted of Cu powder. The composites were synthesized using ultrasonication-aided stir casting process. The composites samples were subjected to T6 heat treatment before performing mechanical characterization. The composites with Cu powder premixed Metakaolin particles showed improvement in tensile strength, ductility, compressive strength and hardness. The microstructure evaluation of the composites was performed by Scanning Electron Microscope (SEM) and Optical Microscope (OM). The tensile fracture modes were studied by analysing the fracture surface morphology using SEM.","PeriodicalId":38546,"journal":{"name":"Frattura ed Integrita Strutturale","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical characterization and analysis of tensile fracture modes of ultrasonically stir cast Al6082 composites reinforced with Cu powder premixed Metakaolin particles\",\"authors\":\"Renjin J Bright, P. Hariharasakthisudhan\",\"doi\":\"10.3221/igf-esis.62.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major drawback observed in the ceramic particles reinforced aluminium matrix composites (AMCs) is the reduction of ductility. Incorporating fine metallic particles along with the ceramic reinforcements in the aluminium matrix tends to improve the ductility of the AMCs. This work highlights the effects of dispersing micro (5-10 μm) copper (Cu) particles along with the nano (100-400 nm) Metakaolin particles in the Al6082 matrix. The Metakaolin particles were premixed with Cu powder by means of manual stirring followed by ball milling before embedding into the Al6082 matrix. The total reinforcement composition was maintained as 7.5 wt.% in which 2.5 wt.% consisted of Cu powder. The composites were synthesized using ultrasonication-aided stir casting process. The composites samples were subjected to T6 heat treatment before performing mechanical characterization. The composites with Cu powder premixed Metakaolin particles showed improvement in tensile strength, ductility, compressive strength and hardness. The microstructure evaluation of the composites was performed by Scanning Electron Microscope (SEM) and Optical Microscope (OM). The tensile fracture modes were studied by analysing the fracture surface morphology using SEM.\",\"PeriodicalId\":38546,\"journal\":{\"name\":\"Frattura ed Integrita Strutturale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrita Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.62.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrita Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.62.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷颗粒增强铝基复合材料(AMCs)的主要缺点是延展性降低。在铝基体中加入细小的金属颗粒和陶瓷增强剂有利于提高复合材料的延展性。本文重点研究了微(5-10 μm)铜(Cu)颗粒与纳米(100-400 nm)偏高岭土颗粒在Al6082基体中的分散效果。将偏高岭土颗粒与铜粉通过人工搅拌和球磨进行预混,然后包埋到Al6082基体中。总增强成分保持在7.5 wt.%,其中铜粉占2.5 wt.%。采用超声辅助搅拌铸造工艺合成了复合材料。复合材料样品在进行力学表征之前进行T6热处理。铜粉预混偏高岭土颗粒复合材料的抗拉强度、塑性、抗压强度和硬度均有提高。采用扫描电镜(SEM)和光学显微镜(OM)对复合材料的微观结构进行了表征。利用扫描电镜(SEM)分析断口形貌,研究了拉伸断裂模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical characterization and analysis of tensile fracture modes of ultrasonically stir cast Al6082 composites reinforced with Cu powder premixed Metakaolin particles
The major drawback observed in the ceramic particles reinforced aluminium matrix composites (AMCs) is the reduction of ductility. Incorporating fine metallic particles along with the ceramic reinforcements in the aluminium matrix tends to improve the ductility of the AMCs. This work highlights the effects of dispersing micro (5-10 μm) copper (Cu) particles along with the nano (100-400 nm) Metakaolin particles in the Al6082 matrix. The Metakaolin particles were premixed with Cu powder by means of manual stirring followed by ball milling before embedding into the Al6082 matrix. The total reinforcement composition was maintained as 7.5 wt.% in which 2.5 wt.% consisted of Cu powder. The composites were synthesized using ultrasonication-aided stir casting process. The composites samples were subjected to T6 heat treatment before performing mechanical characterization. The composites with Cu powder premixed Metakaolin particles showed improvement in tensile strength, ductility, compressive strength and hardness. The microstructure evaluation of the composites was performed by Scanning Electron Microscope (SEM) and Optical Microscope (OM). The tensile fracture modes were studied by analysing the fracture surface morphology using SEM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frattura ed Integrita Strutturale
Frattura ed Integrita Strutturale Engineering-Mechanical Engineering
CiteScore
3.40
自引率
0.00%
发文量
114
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信