欧亚大陆北部水生三棱(Xanthosparganium,Typhaceae)的高度多样性主要是由反复杂交解释的

IF 3.5 3区 环境科学与生态学 Q1 ECOLOGY
Alexander A. Bobrov , Polina A. Volkova , Olga A. Mochalova , Elena V. Chemeris
{"title":"欧亚大陆北部水生三棱(Xanthosparganium,Typhaceae)的高度多样性主要是由反复杂交解释的","authors":"Alexander A. Bobrov ,&nbsp;Polina A. Volkova ,&nbsp;Olga A. Mochalova ,&nbsp;Elena V. Chemeris","doi":"10.1016/j.ppees.2023.125746","DOIUrl":null,"url":null,"abstract":"<div><p>The species composition and extent of hybridization in <em>Sparganium</em> subgenus <em>Xanthosparganium</em><span> in North Eurasia reported in different published sources significantly vary. Thus, we aimed to clarify the taxonomy and distribution of aquatic </span><em>Sparganium</em><span> in that area. We supplemented the existing fragmentary genetic and morphological data mainly from North America and South Asia with our data from East Europe and North Asia. We combined molecular barcoding of the nuclear phyC<span> and plastid psbJ-petA DNA regions (382 samples) with morphological analysis of herbarium collections (more than 1500 specimens from 16 herbaria) and numerous natural populations with a special focus on hardly accessible Siberian and the Far Eastern regions of Russia. We found that aquatic </span></span><em>Sparganium</em> is represented in North Eurasia by nine species and 14 hybrids. Nine previously unknown hybrids are formally described as new nothotaxa. All species and hybrids could be reliably discriminated with barcoding. We refined the distribution of all taxa in North Eurasia, e.g., <em>S</em>. <em>angustifolium</em>, a species avoiding continental areas, where it was confused by many authors with mostly vegetative specimens of other taxa. In the <em>S</em>. <em>emersum</em> complex in addition to recognized earlier widespread <em>S</em>. <em>emersum</em> and eastern North American <em>S</em>. <em>chlorocarpum</em> we proved the existence of one more distinct lineage – Asian Pacific <em>S</em>. <em>rothertii</em>. We discovered different evolutionary lineages within some species (e.g., <em>S</em>. <em>glomeratum</em> and <em>S. hyperboreum</em><span>) causing additional issues in the taxa identification. Almost all species cross with each other, usually acting both as plastid and pollen donors. Most of the hybrids are widespread and abundant. They originate each time when the ranges of parental species overlap and suitable habitats are available, and rather do not disperse from the centres of origin. Hybridization can be a threat to species with narrow ecological tolerance. Active gene flow is also evident within species when different evolutionary lineages come in contact (e.g., </span><em>S</em>. <em>emersum</em>, <em>S. rothertii</em>, <em>S</em>. <em>glomeratum</em>, <em>S. hyperboreum</em>, <em>S. natans</em>). We provide a new taxonomic treatment, which solves many long-standing issues in subgenus <em>Xanthosparganium</em>, and a new identification key for both species and hybrids occurring in North Eurasia.</p></div>","PeriodicalId":56093,"journal":{"name":"Perspectives in Plant Ecology Evolution and Systematics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High diversity of aquatic Sparganium (Xanthosparganium, Typhaceae) in North Eurasia is mostly explained by recurrent hybridization\",\"authors\":\"Alexander A. Bobrov ,&nbsp;Polina A. Volkova ,&nbsp;Olga A. Mochalova ,&nbsp;Elena V. Chemeris\",\"doi\":\"10.1016/j.ppees.2023.125746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The species composition and extent of hybridization in <em>Sparganium</em> subgenus <em>Xanthosparganium</em><span> in North Eurasia reported in different published sources significantly vary. Thus, we aimed to clarify the taxonomy and distribution of aquatic </span><em>Sparganium</em><span> in that area. We supplemented the existing fragmentary genetic and morphological data mainly from North America and South Asia with our data from East Europe and North Asia. We combined molecular barcoding of the nuclear phyC<span> and plastid psbJ-petA DNA regions (382 samples) with morphological analysis of herbarium collections (more than 1500 specimens from 16 herbaria) and numerous natural populations with a special focus on hardly accessible Siberian and the Far Eastern regions of Russia. We found that aquatic </span></span><em>Sparganium</em> is represented in North Eurasia by nine species and 14 hybrids. Nine previously unknown hybrids are formally described as new nothotaxa. All species and hybrids could be reliably discriminated with barcoding. We refined the distribution of all taxa in North Eurasia, e.g., <em>S</em>. <em>angustifolium</em>, a species avoiding continental areas, where it was confused by many authors with mostly vegetative specimens of other taxa. In the <em>S</em>. <em>emersum</em> complex in addition to recognized earlier widespread <em>S</em>. <em>emersum</em> and eastern North American <em>S</em>. <em>chlorocarpum</em> we proved the existence of one more distinct lineage – Asian Pacific <em>S</em>. <em>rothertii</em>. We discovered different evolutionary lineages within some species (e.g., <em>S</em>. <em>glomeratum</em> and <em>S. hyperboreum</em><span>) causing additional issues in the taxa identification. Almost all species cross with each other, usually acting both as plastid and pollen donors. Most of the hybrids are widespread and abundant. They originate each time when the ranges of parental species overlap and suitable habitats are available, and rather do not disperse from the centres of origin. Hybridization can be a threat to species with narrow ecological tolerance. Active gene flow is also evident within species when different evolutionary lineages come in contact (e.g., </span><em>S</em>. <em>emersum</em>, <em>S. rothertii</em>, <em>S</em>. <em>glomeratum</em>, <em>S. hyperboreum</em>, <em>S. natans</em>). We provide a new taxonomic treatment, which solves many long-standing issues in subgenus <em>Xanthosparganium</em>, and a new identification key for both species and hybrids occurring in North Eurasia.</p></div>\",\"PeriodicalId\":56093,\"journal\":{\"name\":\"Perspectives in Plant Ecology Evolution and Systematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspectives in Plant Ecology Evolution and Systematics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1433831923000306\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Plant Ecology Evolution and Systematics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1433831923000306","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

不同文献中报道的欧亚大陆北部的三棱亚属黄孢子虫的物种组成和杂交程度存在显著差异。因此,我们旨在阐明该地区水生三棱的分类和分布。我们用东欧和北亚的数据补充了主要来自北美和南亚的现有零碎遗传和形态数据。我们将核phyC和质体psbJ petA DNA区域(382个样本)的分子条形码与植物标本馆收藏(来自16个植物标本馆的1500多个样本)和众多自然种群的形态学分析相结合,特别关注难以进入的西伯利亚和俄罗斯远东地区。我们发现水生三棱在欧亚大陆北部有9个物种和14个杂交种。九个以前未知的杂交种被正式描述为新的nothotaxa。所有物种和杂交种都可以通过条形码进行可靠的区分。我们对欧亚大陆北部所有分类群的分布进行了细化,例如狭叶藻,这是一种避开大陆地区的物种,在那里,许多作者将其与其他分类群的主要营养标本混淆。在砂仁复合体中,除了公认的早期广泛分布的砂仁和北美东部的绿果砂仁外,我们还证明了一个更独特的谱系的存在——亚太砂仁。我们在一些物种中发现了不同的进化谱系(例如,S.glomeratum和S.overboreum),这在分类群鉴定中引起了额外的问题。几乎所有物种都会相互杂交,通常同时作为质体和花粉供体。大多数杂交种分布广泛且数量丰富。每当亲本物种的范围重叠且有合适的栖息地时,它们就会起源,而不是从起源中心分散开来。杂交可能对生态耐受性较低的物种构成威胁。当不同的进化谱系接触时,物种内部的活跃基因流动也很明显(例如,emersum S.rothertii S.glomeratum S.overboreum S.natans)。我们提供了一种新的分类学处理方法,解决了黄孢子亚属中许多长期存在的问题,并为欧亚大陆北部的物种和杂交种提供了一个新的鉴定钥匙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High diversity of aquatic Sparganium (Xanthosparganium, Typhaceae) in North Eurasia is mostly explained by recurrent hybridization

The species composition and extent of hybridization in Sparganium subgenus Xanthosparganium in North Eurasia reported in different published sources significantly vary. Thus, we aimed to clarify the taxonomy and distribution of aquatic Sparganium in that area. We supplemented the existing fragmentary genetic and morphological data mainly from North America and South Asia with our data from East Europe and North Asia. We combined molecular barcoding of the nuclear phyC and plastid psbJ-petA DNA regions (382 samples) with morphological analysis of herbarium collections (more than 1500 specimens from 16 herbaria) and numerous natural populations with a special focus on hardly accessible Siberian and the Far Eastern regions of Russia. We found that aquatic Sparganium is represented in North Eurasia by nine species and 14 hybrids. Nine previously unknown hybrids are formally described as new nothotaxa. All species and hybrids could be reliably discriminated with barcoding. We refined the distribution of all taxa in North Eurasia, e.g., S. angustifolium, a species avoiding continental areas, where it was confused by many authors with mostly vegetative specimens of other taxa. In the S. emersum complex in addition to recognized earlier widespread S. emersum and eastern North American S. chlorocarpum we proved the existence of one more distinct lineage – Asian Pacific S. rothertii. We discovered different evolutionary lineages within some species (e.g., S. glomeratum and S. hyperboreum) causing additional issues in the taxa identification. Almost all species cross with each other, usually acting both as plastid and pollen donors. Most of the hybrids are widespread and abundant. They originate each time when the ranges of parental species overlap and suitable habitats are available, and rather do not disperse from the centres of origin. Hybridization can be a threat to species with narrow ecological tolerance. Active gene flow is also evident within species when different evolutionary lineages come in contact (e.g., S. emersum, S. rothertii, S. glomeratum, S. hyperboreum, S. natans). We provide a new taxonomic treatment, which solves many long-standing issues in subgenus Xanthosparganium, and a new identification key for both species and hybrids occurring in North Eurasia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
28
审稿时长
67 days
期刊介绍: Perspectives in Plant Ecology, Evolution and Systematics (PPEES) publishes outstanding and thought-provoking articles of general interest to an international readership in the fields of plant ecology, evolution and systematics. Of particular interest are longer, in-depth articles that provide a broad understanding of key topics in the field. There are six issues per year. The following types of article will be considered: Full length reviews Essay reviews Longer research articles Meta-analyses Foundational methodological or empirical papers from large consortia or long-term ecological research sites (LTER).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信