二阶锥上线性互补问题的基于模的矩阵分裂算法的最优参数估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhizhi Li, Huai Zhang
{"title":"二阶锥上线性互补问题的基于模的矩阵分裂算法的最优参数估计","authors":"Zhizhi Li, Huai Zhang","doi":"10.1002/nla.2480","DOIUrl":null,"url":null,"abstract":"There are many studies on the well‐known modulus‐based matrix splitting (MMS) algorithm for solving complementarity problems, but very few studies on its optimal parameter, which is of theoretical and practical importance. Therefore and here, by introducing a novel mapping to explicitly cast the implicit fixed point equation and thus obtain the iteration matrix involved, we first present the estimation approach of the optimal parameter of each step of the MMS algorithm for solving linear complementarity problems on the direct product of second‐order cones (SOCLCPs). It also works on single second‐order cone and the non‐negative orthant. On this basis, we further propose an iteration‐independent optimal parameter selection strategy for practical usage. Finally, the practicability and effectiveness of the new proposal are verified by comparing with the experimental optimal parameter and the diagonal part of system matrix. In addition, with the optimal parameter, the effectiveness of the MMS algorithm can indeed be greatly improved, even better than the state‐of‐the‐art solvers SCS and SuperSCS that solve the equivalent SOC programming.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On estimation of the optimal parameter of the modulus‐based matrix splitting algorithm for linear complementarity problems on second‐order cones\",\"authors\":\"Zhizhi Li, Huai Zhang\",\"doi\":\"10.1002/nla.2480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many studies on the well‐known modulus‐based matrix splitting (MMS) algorithm for solving complementarity problems, but very few studies on its optimal parameter, which is of theoretical and practical importance. Therefore and here, by introducing a novel mapping to explicitly cast the implicit fixed point equation and thus obtain the iteration matrix involved, we first present the estimation approach of the optimal parameter of each step of the MMS algorithm for solving linear complementarity problems on the direct product of second‐order cones (SOCLCPs). It also works on single second‐order cone and the non‐negative orthant. On this basis, we further propose an iteration‐independent optimal parameter selection strategy for practical usage. Finally, the practicability and effectiveness of the new proposal are verified by comparing with the experimental optimal parameter and the diagonal part of system matrix. In addition, with the optimal parameter, the effectiveness of the MMS algorithm can indeed be greatly improved, even better than the state‐of‐the‐art solvers SCS and SuperSCS that solve the equivalent SOC programming.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2480\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2480","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

众所周知,求解互补问题的基于模量的矩阵分裂(MMS)算法有很多研究,但对其最优参数的研究却很少,这具有重要的理论和实际意义。因此,在这里,通过引入一种新的映射来显式地投射隐式不动点方程,从而得到所涉及的迭代矩阵,我们首先给出了求解二阶锥直积线性互补问题的MMS算法每一步最优参数的估计方法。它也适用于单二阶锥和非负正交。在此基础上,我们进一步提出了一种与迭代无关的最优参数选择策略。最后,通过与实验最优参数和系统矩阵对角部分的比较,验证了新方案的实用性和有效性。此外,通过优化参数,MMS算法的有效性确实可以大大提高,甚至优于解决等效SOC规划的最先进的解算器SCS和SuperSCS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On estimation of the optimal parameter of the modulus‐based matrix splitting algorithm for linear complementarity problems on second‐order cones
There are many studies on the well‐known modulus‐based matrix splitting (MMS) algorithm for solving complementarity problems, but very few studies on its optimal parameter, which is of theoretical and practical importance. Therefore and here, by introducing a novel mapping to explicitly cast the implicit fixed point equation and thus obtain the iteration matrix involved, we first present the estimation approach of the optimal parameter of each step of the MMS algorithm for solving linear complementarity problems on the direct product of second‐order cones (SOCLCPs). It also works on single second‐order cone and the non‐negative orthant. On this basis, we further propose an iteration‐independent optimal parameter selection strategy for practical usage. Finally, the practicability and effectiveness of the new proposal are verified by comparing with the experimental optimal parameter and the diagonal part of system matrix. In addition, with the optimal parameter, the effectiveness of the MMS algorithm can indeed be greatly improved, even better than the state‐of‐the‐art solvers SCS and SuperSCS that solve the equivalent SOC programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信