{"title":"域上方阵的某些性质及其在环上的应用","authors":"P. Danchev","doi":"10.15446/recolma.v54n2.93833","DOIUrl":null,"url":null,"abstract":"We prove that any square nilpotent matrix over a field is a difference of two idempotent matrices as well as that any square matrix over an algebraically closed field is a sum of a nilpotent square-zero matrix and a diagonalizable matrix. We further apply these two assertions to a variation of π-regular rings. These results somewhat improve on establishments due to Breaz from Linear Algebra & amp; Appl. (2018) and Abyzov from Siberian Math. J. (2019) as well as they also refine two recent achievements due to the present author, published in Vest. St. Petersburg Univ. - Ser. Math., Mech. & amp; Astr. (2019) and Chebyshevskii Sb. (2019), respectively.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Certain Properties of Square Matrices over Fields with Applications to Rings\",\"authors\":\"P. Danchev\",\"doi\":\"10.15446/recolma.v54n2.93833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any square nilpotent matrix over a field is a difference of two idempotent matrices as well as that any square matrix over an algebraically closed field is a sum of a nilpotent square-zero matrix and a diagonalizable matrix. We further apply these two assertions to a variation of π-regular rings. These results somewhat improve on establishments due to Breaz from Linear Algebra & amp; Appl. (2018) and Abyzov from Siberian Math. J. (2019) as well as they also refine two recent achievements due to the present author, published in Vest. St. Petersburg Univ. - Ser. Math., Mech. & amp; Astr. (2019) and Chebyshevskii Sb. (2019), respectively.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v54n2.93833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v54n2.93833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Certain Properties of Square Matrices over Fields with Applications to Rings
We prove that any square nilpotent matrix over a field is a difference of two idempotent matrices as well as that any square matrix over an algebraically closed field is a sum of a nilpotent square-zero matrix and a diagonalizable matrix. We further apply these two assertions to a variation of π-regular rings. These results somewhat improve on establishments due to Breaz from Linear Algebra & amp; Appl. (2018) and Abyzov from Siberian Math. J. (2019) as well as they also refine two recent achievements due to the present author, published in Vest. St. Petersburg Univ. - Ser. Math., Mech. & amp; Astr. (2019) and Chebyshevskii Sb. (2019), respectively.