局部外方阵与Asai l -函数forGL(n)的奇特征

Pub Date : 2021-09-13 DOI:10.2140/pjm.2023.322.301
Yeongseong Jo
{"title":"局部外方阵与Asai l -函数forGL(n)的奇特征","authors":"Yeongseong Jo","doi":"10.2140/pjm.2023.322.301","DOIUrl":null,"url":null,"abstract":"Let $F$ be a non-archimedean local field of odd characteristic $p>0$. In this paper, we consider local exterior square $L$-functions $L(s,\\pi,\\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\\pi,BF)$, and Asai $L$-functions $L(s,\\pi,As)$ of an irreducible admissible representation $\\pi$ of $GL_m(F)$. In particular, we establish that those $L$-functions, via the theory of integral representations, are equal to their corresponding Artin $L$-functions $L(s,\\wedge^2(\\phi(\\pi)))$, $L(s+1/2,\\phi(\\pi))L(s,\\wedge^2(\\phi(\\pi)))$, and $L(s,As(\\phi(\\pi)))$ of the associated Langlands parameter $\\phi(\\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local exterior square and Asai L-functions for\\nGL(n) in odd characteristic\",\"authors\":\"Yeongseong Jo\",\"doi\":\"10.2140/pjm.2023.322.301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a non-archimedean local field of odd characteristic $p>0$. In this paper, we consider local exterior square $L$-functions $L(s,\\\\pi,\\\\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\\\\pi,BF)$, and Asai $L$-functions $L(s,\\\\pi,As)$ of an irreducible admissible representation $\\\\pi$ of $GL_m(F)$. In particular, we establish that those $L$-functions, via the theory of integral representations, are equal to their corresponding Artin $L$-functions $L(s,\\\\wedge^2(\\\\phi(\\\\pi)))$, $L(s+1/2,\\\\phi(\\\\pi))L(s,\\\\wedge^2(\\\\phi(\\\\pi)))$, and $L(s,As(\\\\phi(\\\\pi)))$ of the associated Langlands parameter $\\\\phi(\\\\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$F$是奇特征$p>0$的非阿基米德局部域。在本文中,我们考虑$GL_m(F)$的不可约可容许表示$\pi$的局部外平方$L$-函数$L。特别地,我们通过积分表示理论,确定了这些$L$-函数等于它们在局部Langlands对应关系下的相关Langlands参数$\phi(\pi)$的相应Artin$L$-L$-函数$L(s,\wedge^2(\pi(\pi。这些是通过利用Henniart和Lomeli提出的从局部到全局的论点来证明不可约超三尖体表示的恒等式来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local exterior square and Asai L-functions for GL(n) in odd characteristic
Let $F$ be a non-archimedean local field of odd characteristic $p>0$. In this paper, we consider local exterior square $L$-functions $L(s,\pi,\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\pi,BF)$, and Asai $L$-functions $L(s,\pi,As)$ of an irreducible admissible representation $\pi$ of $GL_m(F)$. In particular, we establish that those $L$-functions, via the theory of integral representations, are equal to their corresponding Artin $L$-functions $L(s,\wedge^2(\phi(\pi)))$, $L(s+1/2,\phi(\pi))L(s,\wedge^2(\phi(\pi)))$, and $L(s,As(\phi(\pi)))$ of the associated Langlands parameter $\phi(\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信