{"title":"局部外方阵与Asai l -函数forGL(n)的奇特征","authors":"Yeongseong Jo","doi":"10.2140/pjm.2023.322.301","DOIUrl":null,"url":null,"abstract":"Let $F$ be a non-archimedean local field of odd characteristic $p>0$. In this paper, we consider local exterior square $L$-functions $L(s,\\pi,\\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\\pi,BF)$, and Asai $L$-functions $L(s,\\pi,As)$ of an irreducible admissible representation $\\pi$ of $GL_m(F)$. In particular, we establish that those $L$-functions, via the theory of integral representations, are equal to their corresponding Artin $L$-functions $L(s,\\wedge^2(\\phi(\\pi)))$, $L(s+1/2,\\phi(\\pi))L(s,\\wedge^2(\\phi(\\pi)))$, and $L(s,As(\\phi(\\pi)))$ of the associated Langlands parameter $\\phi(\\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local exterior square and Asai L-functions for\\nGL(n) in odd characteristic\",\"authors\":\"Yeongseong Jo\",\"doi\":\"10.2140/pjm.2023.322.301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a non-archimedean local field of odd characteristic $p>0$. In this paper, we consider local exterior square $L$-functions $L(s,\\\\pi,\\\\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\\\\pi,BF)$, and Asai $L$-functions $L(s,\\\\pi,As)$ of an irreducible admissible representation $\\\\pi$ of $GL_m(F)$. In particular, we establish that those $L$-functions, via the theory of integral representations, are equal to their corresponding Artin $L$-functions $L(s,\\\\wedge^2(\\\\phi(\\\\pi)))$, $L(s+1/2,\\\\phi(\\\\pi))L(s,\\\\wedge^2(\\\\phi(\\\\pi)))$, and $L(s,As(\\\\phi(\\\\pi)))$ of the associated Langlands parameter $\\\\phi(\\\\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.301\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Local exterior square and Asai L-functions for
GL(n) in odd characteristic
Let $F$ be a non-archimedean local field of odd characteristic $p>0$. In this paper, we consider local exterior square $L$-functions $L(s,\pi,\wedge^2)$, Bump-Friedberg $L$-functions $L(s,\pi,BF)$, and Asai $L$-functions $L(s,\pi,As)$ of an irreducible admissible representation $\pi$ of $GL_m(F)$. In particular, we establish that those $L$-functions, via the theory of integral representations, are equal to their corresponding Artin $L$-functions $L(s,\wedge^2(\phi(\pi)))$, $L(s+1/2,\phi(\pi))L(s,\wedge^2(\phi(\pi)))$, and $L(s,As(\phi(\pi)))$ of the associated Langlands parameter $\phi(\pi)$ under the local Langlands correspondence. These are achieved by proving the identity for irreducible supercuspidal representations, exploiting the local to global argument due to Henniart and Lomeli.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.