超声波处理(低频)对发酵乳中益生菌生长的影响

IF 0.6 Q4 FOOD SCIENCE & TECHNOLOGY
A. Niamah
{"title":"超声波处理(低频)对发酵乳中益生菌生长的影响","authors":"A. Niamah","doi":"10.17170/KOBRA-20190709592","DOIUrl":null,"url":null,"abstract":"The effect of ultrasonic treatment at 40 kHz for 0, 5, 10, 15 and 20 minutes on the growth of five different strains of probiotic bacteria (Lactobacillus acidophilus LA-5, Lactobacillus casei LC, Lactobacillus reuteri LR-MM53, Bifidobacterium bifidum Bb-12 and Bifidobacterium loungm BB-536) in fermented milk was investigated. The study findings indicate that ultrasound treatment (10 minutes) increased the viable cells and total acidity for LA-5, LC and LR-MM53 samples but decreased viable cells and total acidity in the Bb-12 and BB-536 samples. All probiotic bacteria strains were ruptured by ultrasound treatment causing an increase in the extracellular release of β-galactosidase enzyme. Increased exposure time led to higher enzymatic activity. 2.9 unit/ml of β-galactosidase was measured in LR-MM53 after ultrasonic treatment for 20 minutes. The fermentation time of LA-5, LC and LR-MM53 samples were reduced after 10 minutes of ultrasound treatment compared with the control sample. Added 5 percent (10⁸ CFU/ml) of probiotic bacteria led to reduce at the fermentation time during ultrasonic treatment compared with control sample. The optimal time span of ultrasound treatment (40 kHz, 116 W) was 10 minutes for all fermented milk samples, which can be applied to increase the number of viable cells of probiotic bacteria and β-galactosidase enzyme. \nKeywords: Probiotic bacteria, Ultrasound, Fermented milk, β-galactosida \nData of the article \nFirst received: 26 July 2018 | Last revision received: 27 March 2019Accepted: 20 May 2019 | Published online: 04 September 2019 DOI:10.17170/kobra-20190709592 \nReferences \nAbbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 5(3), 139-157. \nAl-hilphy, A. R. S., Niamah, A. K., & Al-Temimi, A. B. (2012). Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. International Journal of Food Science and Nutrition Engineering, 2(6), 113-118. \nAl-hilphy, A.R., Verma, D.K., Niamah, A. K., Billoria, S., & Srivastar, P. (2016). Principles of ultrasonic technology for treatment of milk and milk products. In M. Meghwal & M. R. Goyal (Eds.), Food process engineering: Emerging trends in research and their applications (pp. 178-202). Apple Academic Press. \nAl-Manhel, A. J., & Niamah, A. K. (2017). Mannan extract from Saccharomyces cerevisiae used as prebiotic in bioyogurt production from buffalo milk. International Food Research Journal, 24(5), 2259-2264. \nCarrillo-Lopez, L. M., Alarcon-Rojo, A. D., Luna-Rodriguez, L., & Reyes-Villagrana, R. (2017). Modification of Food Systems by Ultrasound. Journal of Food Quality, 2017. doi:10.1155/2017/5794931 \nChau, Y., Suen, W. L. L., Tse, H. Y., & Wong, H. S. (2017). Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules. European Journal of Pharmaceutical Sciences, 100, 273-279. \nde Lima Alves, L., da Silva, M. S., Flores, D. R. M., Athayde, D. R., Ruviaro, A. R., da Silva Brum, D., Batista, V. S. F., de Oliveira Mello, R., de Menezes, C. R., Campagnol, P. C. B., Wagner, R., Barin, J. S., & Cichoski, A. J. (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. doi:10.1016/j.foodres.2017.12.074 \nDong, Y., Su, H., Jiang, H., Zheng, H., Du, Y., Wu, J., & Li, D. (2017). Experimental study on the influence of low-frequency and low-intensity ultrasound on the permeability of the Mycobacterium smegmatis cytoderm and potentiation with levofloxacin. Ultrasonics Sonochemistry, 37, 1-8. doi:10.1016/j.ultsonch.2016.12.024 \nElder, S. A. (1959). Cavitation microstreaming. The Journal of the Acoustical Society of America, 31(1), 54-64. \nGustaw, W., Kordowska-Wiater, M., & Koziol, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yoghurt production. Acta Sci Pol Technol Aliment., 10(4), 455-466. \nKassem, A., Meade, J., McGill, K., Walsh, C., Gibbons, J., Lyng, J., & Whyte, P. (2018). An investigation of high intensity ultrasonication and chemical immersion treatments on Campylobacter jejuni and spoilage bacteria in chicken. Innovative Food Science & Emerging Technologies, 45, 298-305. \nIPCC. (2007) Climate change 2007: The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). New York: Cambridge University Press. Retrieved from https://www.ipcc.ch/report/ar4/wg1/ \nNguyen, T. M. P., Lee, Y. K., & Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by high intensity ultrasound. International dairy journal, 19(6), 410-416. \nNiamah, A. K. (2017). Physicochemical and microbial characteristics of yogurt added with Saccharomyces boulardii. Current Research in Nutrition and Food Science Journal, 5(3), 300-307. \nNiamah, A. K., Al-Sahlany, S. T. G., & Al-Manhel, A. J. (2016). Gum Arabic uses as prebiotic in yogurt production and study effects on physical, chemical properties and survivability of probiotic bacteria during cold storage. World Applied Sciences Journal, 34(9), 1190-1196. \nNiamah, A. K., Sahi, A. A., & Al-Sharifi, A. S. (2017). Effect of feeding soy milk fermented by probiotic bacteria on some blood criteria and weight of experimental animals. Probiotics and Antimicrobial Proteins, 9(3), 284–291. \nOjha, K. S., Granato, D., Rajuria, G., Barba, F. J., Kerry, J. P., & Tiwari, B. K. (2018). Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chemistry, 239, 544-550. \nOjha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410-417. \nO'Leary, V. S., & Woychik, J. H. (1976). Utilization of lactose, glucose, and galactose by a mixed culture of Streptococcus thermophilus and Lactobacillus bulgaricus in milk treated with lactase enzyme. Applied and Environmental Microbiology, 32(1), 89-94. \nPitt, W. G., & Ross, S. A. (2003). Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress, 19(3), 1038-1044. \nPohlman, F. W., Dikeman, M. E., & Zayas, J. F. (1997). The effect of low-intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuum-packaged beef semitendinosus and biceps femoris muscles. Meat Science, 45(3), 329-337. \nRacioppo, A., Corbo, M. R., Piccoli, C., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2017). Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243, 78-83. \nRanadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1-7. doi:10.1016/j.foodres.2009.09.009 \nShershenkov, B., & Suchkova, E. (2015). Upgrading the technology of functional dairy products by means of fermentation process ultrasonic intensification. Agronomy Research, 13(4), 1074-1085. \nTabatabaie, F., & Mortazavi, A. (2008). Studying the effects of ultrasound shock on cell wall permeability and survival of some LAB in milk. World Applied Sciences Journal ,3(1), 119-121. \nUnver, A. (2016). Applications of ultrasound in food processing. Green Chemistry & Technology Letters, 2(3), 121-126. \nVercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50(21), 6165-6171. \nWang, D., & Sakakibara, M. (1997). Lactose hydrolysis and b-galactosidase activity in sonicated fermentation with Lactobacillus strains. Ultrasonics Sonochemistry, 4, 255-261. \nWu, X., & Narsimhan, G. (2017). Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT-Food Science and Technology, 75, 578-581. \nYang, M., & Li, L. (2010). Physicochemical, textural and sensory characteristics of probiotic soy yogurt prepared from germinated soybean. Food Technology and Biotechnology, 48(4), 490-496.","PeriodicalId":12705,"journal":{"name":"Future of Food: Journal on Food, Agriculture and Society","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Ultrasound treatment (low frequency) effects on probiotic bacteria growth in fermented milk\",\"authors\":\"A. Niamah\",\"doi\":\"10.17170/KOBRA-20190709592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of ultrasonic treatment at 40 kHz for 0, 5, 10, 15 and 20 minutes on the growth of five different strains of probiotic bacteria (Lactobacillus acidophilus LA-5, Lactobacillus casei LC, Lactobacillus reuteri LR-MM53, Bifidobacterium bifidum Bb-12 and Bifidobacterium loungm BB-536) in fermented milk was investigated. The study findings indicate that ultrasound treatment (10 minutes) increased the viable cells and total acidity for LA-5, LC and LR-MM53 samples but decreased viable cells and total acidity in the Bb-12 and BB-536 samples. All probiotic bacteria strains were ruptured by ultrasound treatment causing an increase in the extracellular release of β-galactosidase enzyme. Increased exposure time led to higher enzymatic activity. 2.9 unit/ml of β-galactosidase was measured in LR-MM53 after ultrasonic treatment for 20 minutes. The fermentation time of LA-5, LC and LR-MM53 samples were reduced after 10 minutes of ultrasound treatment compared with the control sample. Added 5 percent (10⁸ CFU/ml) of probiotic bacteria led to reduce at the fermentation time during ultrasonic treatment compared with control sample. The optimal time span of ultrasound treatment (40 kHz, 116 W) was 10 minutes for all fermented milk samples, which can be applied to increase the number of viable cells of probiotic bacteria and β-galactosidase enzyme. \\nKeywords: Probiotic bacteria, Ultrasound, Fermented milk, β-galactosida \\nData of the article \\nFirst received: 26 July 2018 | Last revision received: 27 March 2019Accepted: 20 May 2019 | Published online: 04 September 2019 DOI:10.17170/kobra-20190709592 \\nReferences \\nAbbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 5(3), 139-157. \\nAl-hilphy, A. R. S., Niamah, A. K., & Al-Temimi, A. B. (2012). Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. International Journal of Food Science and Nutrition Engineering, 2(6), 113-118. \\nAl-hilphy, A.R., Verma, D.K., Niamah, A. K., Billoria, S., & Srivastar, P. (2016). Principles of ultrasonic technology for treatment of milk and milk products. In M. Meghwal & M. R. Goyal (Eds.), Food process engineering: Emerging trends in research and their applications (pp. 178-202). Apple Academic Press. \\nAl-Manhel, A. J., & Niamah, A. K. (2017). Mannan extract from Saccharomyces cerevisiae used as prebiotic in bioyogurt production from buffalo milk. International Food Research Journal, 24(5), 2259-2264. \\nCarrillo-Lopez, L. M., Alarcon-Rojo, A. D., Luna-Rodriguez, L., & Reyes-Villagrana, R. (2017). Modification of Food Systems by Ultrasound. Journal of Food Quality, 2017. doi:10.1155/2017/5794931 \\nChau, Y., Suen, W. L. L., Tse, H. Y., & Wong, H. S. (2017). Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules. European Journal of Pharmaceutical Sciences, 100, 273-279. \\nde Lima Alves, L., da Silva, M. S., Flores, D. R. M., Athayde, D. R., Ruviaro, A. R., da Silva Brum, D., Batista, V. S. F., de Oliveira Mello, R., de Menezes, C. R., Campagnol, P. C. B., Wagner, R., Barin, J. S., & Cichoski, A. J. (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. doi:10.1016/j.foodres.2017.12.074 \\nDong, Y., Su, H., Jiang, H., Zheng, H., Du, Y., Wu, J., & Li, D. (2017). Experimental study on the influence of low-frequency and low-intensity ultrasound on the permeability of the Mycobacterium smegmatis cytoderm and potentiation with levofloxacin. Ultrasonics Sonochemistry, 37, 1-8. doi:10.1016/j.ultsonch.2016.12.024 \\nElder, S. A. (1959). Cavitation microstreaming. The Journal of the Acoustical Society of America, 31(1), 54-64. \\nGustaw, W., Kordowska-Wiater, M., & Koziol, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yoghurt production. Acta Sci Pol Technol Aliment., 10(4), 455-466. \\nKassem, A., Meade, J., McGill, K., Walsh, C., Gibbons, J., Lyng, J., & Whyte, P. (2018). An investigation of high intensity ultrasonication and chemical immersion treatments on Campylobacter jejuni and spoilage bacteria in chicken. Innovative Food Science & Emerging Technologies, 45, 298-305. \\nIPCC. (2007) Climate change 2007: The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). New York: Cambridge University Press. Retrieved from https://www.ipcc.ch/report/ar4/wg1/ \\nNguyen, T. M. P., Lee, Y. K., & Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by high intensity ultrasound. International dairy journal, 19(6), 410-416. \\nNiamah, A. K. (2017). Physicochemical and microbial characteristics of yogurt added with Saccharomyces boulardii. Current Research in Nutrition and Food Science Journal, 5(3), 300-307. \\nNiamah, A. K., Al-Sahlany, S. T. G., & Al-Manhel, A. J. (2016). Gum Arabic uses as prebiotic in yogurt production and study effects on physical, chemical properties and survivability of probiotic bacteria during cold storage. World Applied Sciences Journal, 34(9), 1190-1196. \\nNiamah, A. K., Sahi, A. A., & Al-Sharifi, A. S. (2017). Effect of feeding soy milk fermented by probiotic bacteria on some blood criteria and weight of experimental animals. Probiotics and Antimicrobial Proteins, 9(3), 284–291. \\nOjha, K. S., Granato, D., Rajuria, G., Barba, F. J., Kerry, J. P., & Tiwari, B. K. (2018). Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chemistry, 239, 544-550. \\nOjha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410-417. \\nO'Leary, V. S., & Woychik, J. H. (1976). Utilization of lactose, glucose, and galactose by a mixed culture of Streptococcus thermophilus and Lactobacillus bulgaricus in milk treated with lactase enzyme. Applied and Environmental Microbiology, 32(1), 89-94. \\nPitt, W. G., & Ross, S. A. (2003). Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress, 19(3), 1038-1044. \\nPohlman, F. W., Dikeman, M. E., & Zayas, J. F. (1997). The effect of low-intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuum-packaged beef semitendinosus and biceps femoris muscles. Meat Science, 45(3), 329-337. \\nRacioppo, A., Corbo, M. R., Piccoli, C., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2017). Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243, 78-83. \\nRanadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1-7. doi:10.1016/j.foodres.2009.09.009 \\nShershenkov, B., & Suchkova, E. (2015). Upgrading the technology of functional dairy products by means of fermentation process ultrasonic intensification. Agronomy Research, 13(4), 1074-1085. \\nTabatabaie, F., & Mortazavi, A. (2008). Studying the effects of ultrasound shock on cell wall permeability and survival of some LAB in milk. World Applied Sciences Journal ,3(1), 119-121. \\nUnver, A. (2016). Applications of ultrasound in food processing. Green Chemistry & Technology Letters, 2(3), 121-126. \\nVercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50(21), 6165-6171. \\nWang, D., & Sakakibara, M. (1997). Lactose hydrolysis and b-galactosidase activity in sonicated fermentation with Lactobacillus strains. Ultrasonics Sonochemistry, 4, 255-261. \\nWu, X., & Narsimhan, G. (2017). Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT-Food Science and Technology, 75, 578-581. \\nYang, M., & Li, L. (2010). Physicochemical, textural and sensory characteristics of probiotic soy yogurt prepared from germinated soybean. Food Technology and Biotechnology, 48(4), 490-496.\",\"PeriodicalId\":12705,\"journal\":{\"name\":\"Future of Food: Journal on Food, Agriculture and Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future of Food: Journal on Food, Agriculture and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17170/KOBRA-20190709592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future of Food: Journal on Food, Agriculture and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17170/KOBRA-20190709592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 16

摘要

研究了40kHz超声处理0、5、10、15和20分钟对5种不同益生菌菌株(嗜酸乳杆菌LA-5、干酪乳杆菌LC、路氏乳杆菌LR-MM53、双歧杆菌Bb-12和朗氏双歧杆菌Bb-536)在发酵乳中生长的影响。研究结果表明,超声处理(10分钟)增加了LA-5、LC和LR-MM53样品的活细胞和总酸度,但降低了Bb-12和Bb-536样品的活电池和总酸度。超声波处理使所有益生菌菌株破裂,导致β-半乳糖苷酶的细胞外释放增加。暴露时间的增加导致酶活性的提高。超声处理20分钟后,在LR-MM53中测得2.9单位/ml的β-半乳糖苷酶。与对照样品相比,超声处理10分钟后,LA-5、LC和LR-MM53样品的发酵时间缩短。增加5%(10⁸ CFU/ml)导致在超声处理期间的发酵时间与对照样品相比减少。超声波处理(40kHz,116W)的最佳时间跨度为10分钟,可用于增加益生菌和β-半乳糖苷酶的活细胞数量。关键词:益生菌,超声波,发酵乳,β-半乳糖苷文章数据首次收到:2018年7月26日|最后一次修订收到:2019年3月27日接受:2019年5月20日|在线发布:2019年9月4日DOI:10.17170/kobra-20190709592参考文献Abbas,S.,Hayat,K.,Karangwa,E.,Bashari,M.,&Zhang,X.(2013)。超声辅助食品级纳米乳液综述。食品工程评论,5(3),139-157。Al hilphy,A.R.S.、Niamah,A.K.和Al Temimi,A.B.(2012)。超声波处理对水牛乳均质化和细菌数量的影响。国际食品科学与营养工程杂志,2(6),113-118。Al hilphy,A.R.、Verma,D.K.、Niamah,A.K.、Billoria,S.和Srivastar,P.(2016)。超声波技术处理牛奶和奶制品的原理。M.Meghwal和M.R.Goyal(编辑),《食品加工工程:研究及其应用的新兴趋势》(第178-202页)。苹果学术出版社。Al Manhel,A.J.和Niamah,A.K.(2017)。酿酒酵母的甘露聚糖提取物用作水牛奶生产生物酸奶的益生元。《国际食品研究杂志》,24(5),2259-2264。Carrillo Lopez,L.M.、Alarcon Rojo,A.D.、Luna Rodriguez,L.和Reyes Villagrana,R.(2017)。超声波对食品系统的改良。《食品质量杂志》,2017。doi:10.115/2017/5794931周、孙、谢、黄(2017)。超声增强巩膜穿透取决于超声频率和大分子的大小。《欧洲药物科学杂志》,100273-279。de Lima Alves,L.、da Silva,M.S.、Flores,D.R.M.、Athayde,D.R.、Ruviaro,A.R.、da Silva-Brum,D.、Batista,V.S.F.、de Oliveira Mello,R.、de Menezes,C.R.、Campagnol,P.C.B.、Wagner,R.、Barin,J.S.和Cichoski,A.J.(2018)。超声波对意大利腊肠理化和微生物特性的影响。国际食品研究所,106363-373。doi:10.1016/j.foodres.2017.12.074董、苏、江、郑、杜、吴、李,D.(2017)。低频和低强度超声对耻垢分枝杆菌细胞皮通透性及左氧氟沙星增强作用影响的实验研究。超声波-声化学,37,1-8。doi:10.1016/j.ultsonch.2016.12.024 Elder,S.A.(1959)。空化微流。《美国声学学会杂志》,31(1),54-64。Gustaw,W.、Kordowska Wiater,M.和Koziol,J.(2011)。选择的益生元对用于生物酸奶生产的乳酸菌生长的影响。《科技行动》。,10(4),455-466。Kassem,A.、Meade,J.、McGill,K.、Walsh,C.、Gibbons,J.、Lyng,J.和Whyte,P.(2018)。高强度超声和化学浸泡处理对鸡空肠弯曲菌和腐败菌的影响。《创新食品科学与新兴技术》,45298-305。IPCC。(2007)《2007年气候变化:物理科学基础》。第一工作组对政府间气候变化专门委员会(气专委)第四次评估报告的贡献。纽约:剑桥大学出版社。检索自https://www.ipcc.ch/report/ar4/wg1/Nguyen,T.M.P.,Lee,Y.K.和Zhou,W.(2009)。高强度超声波刺激牛奶中双歧杆菌的发酵活性。《国际乳制品杂志》,19(6),410-416。Niamah,A.K.(2017)。添加布拉酵母的酸奶的理化和微生物特性。营养与食品科学期刊,5(3),300-307。Niamah,A.K.,Al Sahlany,S.T.G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound treatment (low frequency) effects on probiotic bacteria growth in fermented milk
The effect of ultrasonic treatment at 40 kHz for 0, 5, 10, 15 and 20 minutes on the growth of five different strains of probiotic bacteria (Lactobacillus acidophilus LA-5, Lactobacillus casei LC, Lactobacillus reuteri LR-MM53, Bifidobacterium bifidum Bb-12 and Bifidobacterium loungm BB-536) in fermented milk was investigated. The study findings indicate that ultrasound treatment (10 minutes) increased the viable cells and total acidity for LA-5, LC and LR-MM53 samples but decreased viable cells and total acidity in the Bb-12 and BB-536 samples. All probiotic bacteria strains were ruptured by ultrasound treatment causing an increase in the extracellular release of β-galactosidase enzyme. Increased exposure time led to higher enzymatic activity. 2.9 unit/ml of β-galactosidase was measured in LR-MM53 after ultrasonic treatment for 20 minutes. The fermentation time of LA-5, LC and LR-MM53 samples were reduced after 10 minutes of ultrasound treatment compared with the control sample. Added 5 percent (10⁸ CFU/ml) of probiotic bacteria led to reduce at the fermentation time during ultrasonic treatment compared with control sample. The optimal time span of ultrasound treatment (40 kHz, 116 W) was 10 minutes for all fermented milk samples, which can be applied to increase the number of viable cells of probiotic bacteria and β-galactosidase enzyme. Keywords: Probiotic bacteria, Ultrasound, Fermented milk, β-galactosida Data of the article First received: 26 July 2018 | Last revision received: 27 March 2019Accepted: 20 May 2019 | Published online: 04 September 2019 DOI:10.17170/kobra-20190709592 References Abbas, S., Hayat, K., Karangwa, E., Bashari, M., & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Engineering Reviews, 5(3), 139-157. Al-hilphy, A. R. S., Niamah, A. K., & Al-Temimi, A. B. (2012). Effect of ultrasonic treatment on buffalo milk homogenization and numbers of bacteria. International Journal of Food Science and Nutrition Engineering, 2(6), 113-118. Al-hilphy, A.R., Verma, D.K., Niamah, A. K., Billoria, S., & Srivastar, P. (2016). Principles of ultrasonic technology for treatment of milk and milk products. In M. Meghwal & M. R. Goyal (Eds.), Food process engineering: Emerging trends in research and their applications (pp. 178-202). Apple Academic Press. Al-Manhel, A. J., & Niamah, A. K. (2017). Mannan extract from Saccharomyces cerevisiae used as prebiotic in bioyogurt production from buffalo milk. International Food Research Journal, 24(5), 2259-2264. Carrillo-Lopez, L. M., Alarcon-Rojo, A. D., Luna-Rodriguez, L., & Reyes-Villagrana, R. (2017). Modification of Food Systems by Ultrasound. Journal of Food Quality, 2017. doi:10.1155/2017/5794931 Chau, Y., Suen, W. L. L., Tse, H. Y., & Wong, H. S. (2017). Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules. European Journal of Pharmaceutical Sciences, 100, 273-279. de Lima Alves, L., da Silva, M. S., Flores, D. R. M., Athayde, D. R., Ruviaro, A. R., da Silva Brum, D., Batista, V. S. F., de Oliveira Mello, R., de Menezes, C. R., Campagnol, P. C. B., Wagner, R., Barin, J. S., & Cichoski, A. J. (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. doi:10.1016/j.foodres.2017.12.074 Dong, Y., Su, H., Jiang, H., Zheng, H., Du, Y., Wu, J., & Li, D. (2017). Experimental study on the influence of low-frequency and low-intensity ultrasound on the permeability of the Mycobacterium smegmatis cytoderm and potentiation with levofloxacin. Ultrasonics Sonochemistry, 37, 1-8. doi:10.1016/j.ultsonch.2016.12.024 Elder, S. A. (1959). Cavitation microstreaming. The Journal of the Acoustical Society of America, 31(1), 54-64. Gustaw, W., Kordowska-Wiater, M., & Koziol, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yoghurt production. Acta Sci Pol Technol Aliment., 10(4), 455-466. Kassem, A., Meade, J., McGill, K., Walsh, C., Gibbons, J., Lyng, J., & Whyte, P. (2018). An investigation of high intensity ultrasonication and chemical immersion treatments on Campylobacter jejuni and spoilage bacteria in chicken. Innovative Food Science & Emerging Technologies, 45, 298-305. IPCC. (2007) Climate change 2007: The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). New York: Cambridge University Press. Retrieved from https://www.ipcc.ch/report/ar4/wg1/ Nguyen, T. M. P., Lee, Y. K., & Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by high intensity ultrasound. International dairy journal, 19(6), 410-416. Niamah, A. K. (2017). Physicochemical and microbial characteristics of yogurt added with Saccharomyces boulardii. Current Research in Nutrition and Food Science Journal, 5(3), 300-307. Niamah, A. K., Al-Sahlany, S. T. G., & Al-Manhel, A. J. (2016). Gum Arabic uses as prebiotic in yogurt production and study effects on physical, chemical properties and survivability of probiotic bacteria during cold storage. World Applied Sciences Journal, 34(9), 1190-1196. Niamah, A. K., Sahi, A. A., & Al-Sharifi, A. S. (2017). Effect of feeding soy milk fermented by probiotic bacteria on some blood criteria and weight of experimental animals. Probiotics and Antimicrobial Proteins, 9(3), 284–291. Ojha, K. S., Granato, D., Rajuria, G., Barba, F. J., Kerry, J. P., & Tiwari, B. K. (2018). Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chemistry, 239, 544-550. Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410-417. O'Leary, V. S., & Woychik, J. H. (1976). Utilization of lactose, glucose, and galactose by a mixed culture of Streptococcus thermophilus and Lactobacillus bulgaricus in milk treated with lactase enzyme. Applied and Environmental Microbiology, 32(1), 89-94. Pitt, W. G., & Ross, S. A. (2003). Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress, 19(3), 1038-1044. Pohlman, F. W., Dikeman, M. E., & Zayas, J. F. (1997). The effect of low-intensity ultrasound treatment on shear properties, color stability and shelf-life of vacuum-packaged beef semitendinosus and biceps femoris muscles. Meat Science, 45(3), 329-337. Racioppo, A., Corbo, M. R., Piccoli, C., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2017). Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243, 78-83. Ranadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1-7. doi:10.1016/j.foodres.2009.09.009 Shershenkov, B., & Suchkova, E. (2015). Upgrading the technology of functional dairy products by means of fermentation process ultrasonic intensification. Agronomy Research, 13(4), 1074-1085. Tabatabaie, F., & Mortazavi, A. (2008). Studying the effects of ultrasound shock on cell wall permeability and survival of some LAB in milk. World Applied Sciences Journal ,3(1), 119-121. Unver, A. (2016). Applications of ultrasound in food processing. Green Chemistry & Technology Letters, 2(3), 121-126. Vercet, A., Oria, R., Marquina, P., Crelier, S., & Lopez-Buesa, P. (2002). Rheological properties of yoghurt made with milk submitted to manothermosonication. Journal of Agricultural and Food Chemistry, 50(21), 6165-6171. Wang, D., & Sakakibara, M. (1997). Lactose hydrolysis and b-galactosidase activity in sonicated fermentation with Lactobacillus strains. Ultrasonics Sonochemistry, 4, 255-261. Wu, X., & Narsimhan, G. (2017). Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT-Food Science and Technology, 75, 578-581. Yang, M., & Li, L. (2010). Physicochemical, textural and sensory characteristics of probiotic soy yogurt prepared from germinated soybean. Food Technology and Biotechnology, 48(4), 490-496.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: Future of Food: Journal on Food, Agriculture & Society (FOFJ) was founded in 2012 in order to provide a platform for scientific debate on agriculture and food-related themes with the goal of a sustainable future for people and planet. The journal is aimed at contributing to debates on sustainable food production and consumption, and is most interested in tackling the most important challenges to the global agri-food system, such as hunger and malnutrition, depletion of natural resources, climate change, threats to biodiversity, and inequity in the agrarian sphere. The journal understands itself as a multi-disciplinary effort and is especially designed to foster interaction between different disciplines and approaches. Hence it invites inputs from social and natural sciences, arts and humanities, academics and scholar-activists, civil society and agroecology practitioners. The journal is attempting to reach its goal by providing open access to readers and allowing contributions without submission fees or publication fees. Contributors are kindly asked to keep in mind that the journal is a non-profit endeavour and that staff time is limited. The journal cannot provide guarantees or financial support for any submission and cannot accept legal responsibility for any stage of the submission process. The Editorial Board is made up by a range of international experts who devote time and energy to peer review and its members deserve gratitude and recognition for their excellent work. All communication between authors, editors, reviewers and editorial staff is conducted in an atmosphere of mutual respect. The journal will not tolerate racism, religious, ethnic and national chauvinism, misogynous and hate language and reserves the right to bar anyone who disrespects these principles from using the platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信