聚乳酸(PLA)的加工技术、性能及应用

Q4 Engineering
K. Hajdek, B. Smoljan, B. Šarkanj, W. Sitek
{"title":"聚乳酸(PLA)的加工技术、性能及应用","authors":"K. Hajdek, B. Smoljan, B. Šarkanj, W. Sitek","doi":"10.54684/ijmmt.2023.15.1.87","DOIUrl":null,"url":null,"abstract":"Poly (lactic acid) (PLA) is a one of substitutions to fossil-based polymers because they have a less influence on the environment. Material sustainability requirements have increased importance of PLA polymers and others similar biopolymers. PLA polymeris an aliphatic polyester, usually produced by ring-opening polymerization or by polycondensation of lactic acid. For the production of PLA components, melt processing is one of the most commonly used techniques. Today, processing technologies of PLA components include injection moulding, hot pressing, spinning, blow moulding, foam moulding, electrospinning, 3D printing, and so on. PLA polymers have better thermal workability than most bio-based polymers. The analysis of mechanical properties, structure in processes, and an appropriate application of PLA is done in this paper. Also this paper summarizes variations in thermal degradation, recyclability, biodegradation and aging during PLA processing and application. The tensile strength and modulus of elasticity of PLA polymers is similar to those of conventional polyesters. But, because PLA polymers are biodegradable, they can change properties if exposed to uncontrolled temperature and humidity conditions. PLA polymers have lower toughness than those of conventional polyesters. Toughness could be improved by development of PLA composites. PLA is safe for use in the manufacturing of products that are in contact with food. European Food Safety Authority (EFSA) recognize PLA as material which can be safely employed as a food packaging material without causing adverse health effects. PLA possesses barrier properties that are just as effective as LDPE and PS. Limited antibacterial properties of PLA can be improved by application of antibacterial agents. Generally high price of PLA polymers limits their application as a packaging material. Biodegradable PLA polymers are suitable for a wide range of industrial, biomedical and pharmaceutical applications, such as material for medical implants, resorbable prostheses, controlled drug release, biodegradable joints and supports for tissue engineering. Development of processing methods is needed for sufficient increase the industrial application of PLA polymers. Suitable methods to minimize the disadvantages of PLA can be blending PLA with other materials, creating micro- and nanocomposites, coating with high-barrier materials, and polymer modification.","PeriodicalId":38009,"journal":{"name":"International Journal of Modern Manufacturing Technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROCESSING TECHNOLOGIES, PROPERTIES AND APPLICATION OF POLY (LACTIC ACID) (PLA)\",\"authors\":\"K. Hajdek, B. Smoljan, B. Šarkanj, W. Sitek\",\"doi\":\"10.54684/ijmmt.2023.15.1.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly (lactic acid) (PLA) is a one of substitutions to fossil-based polymers because they have a less influence on the environment. Material sustainability requirements have increased importance of PLA polymers and others similar biopolymers. PLA polymeris an aliphatic polyester, usually produced by ring-opening polymerization or by polycondensation of lactic acid. For the production of PLA components, melt processing is one of the most commonly used techniques. Today, processing technologies of PLA components include injection moulding, hot pressing, spinning, blow moulding, foam moulding, electrospinning, 3D printing, and so on. PLA polymers have better thermal workability than most bio-based polymers. The analysis of mechanical properties, structure in processes, and an appropriate application of PLA is done in this paper. Also this paper summarizes variations in thermal degradation, recyclability, biodegradation and aging during PLA processing and application. The tensile strength and modulus of elasticity of PLA polymers is similar to those of conventional polyesters. But, because PLA polymers are biodegradable, they can change properties if exposed to uncontrolled temperature and humidity conditions. PLA polymers have lower toughness than those of conventional polyesters. Toughness could be improved by development of PLA composites. PLA is safe for use in the manufacturing of products that are in contact with food. European Food Safety Authority (EFSA) recognize PLA as material which can be safely employed as a food packaging material without causing adverse health effects. PLA possesses barrier properties that are just as effective as LDPE and PS. Limited antibacterial properties of PLA can be improved by application of antibacterial agents. Generally high price of PLA polymers limits their application as a packaging material. Biodegradable PLA polymers are suitable for a wide range of industrial, biomedical and pharmaceutical applications, such as material for medical implants, resorbable prostheses, controlled drug release, biodegradable joints and supports for tissue engineering. Development of processing methods is needed for sufficient increase the industrial application of PLA polymers. Suitable methods to minimize the disadvantages of PLA can be blending PLA with other materials, creating micro- and nanocomposites, coating with high-barrier materials, and polymer modification.\",\"PeriodicalId\":38009,\"journal\":{\"name\":\"International Journal of Modern Manufacturing Technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Manufacturing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54684/ijmmt.2023.15.1.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Manufacturing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54684/ijmmt.2023.15.1.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

聚乳酸(PLA)因其对环境的影响较小而成为化石基聚合物的替代品之一。材料可持续性要求增加了PLA聚合物和其他类似生物聚合物的重要性。聚乳酸是一种脂肪族聚酯,通常由开环聚合或乳酸缩聚而成。对于PLA部件的生产,熔体加工是最常用的技术之一。目前,PLA部件的加工技术包括注塑、热压、纺丝、吹塑、泡沫成型、静电纺丝、3D打印等。PLA聚合物比大多数生物基聚合物具有更好的热加工性。本文对聚乳酸的力学性能、工艺结构进行了分析,提出了聚乳酸的合理应用。总结了聚乳酸在加工和应用过程中热降解、可回收性、生物降解和老化等方面的变化。聚乳酸聚合物的抗拉强度和弹性模量与常规聚酯相似。但是,由于聚乳酸聚合物是可生物降解的,如果暴露在不受控制的温度和湿度条件下,它们会改变性能。PLA聚合物的韧性低于常规聚酯。PLA复合材料的开发可以提高材料的韧性。PLA用于制造与食品接触的产品是安全的。欧洲食品安全局(EFSA)承认聚乳酸是一种可以安全用作食品包装材料而不会对健康造成不良影响的材料。聚乳酸具有与LDPE和PS一样有效的阻隔性能。聚乳酸有限的抗菌性能可以通过抗菌剂的应用得到改善。PLA聚合物的高价格限制了其作为包装材料的应用。可生物降解PLA聚合物适用于广泛的工业、生物医学和制药应用,例如医疗植入物、可吸收假体、控制药物释放、可生物降解关节和组织工程支撑的材料。为了充分提高聚乳酸聚合物的工业应用,需要发展加工方法。减少聚乳酸缺点的合适方法可以是与其他材料共混,制造微纳米复合材料,用高阻隔材料涂覆,以及聚合物改性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROCESSING TECHNOLOGIES, PROPERTIES AND APPLICATION OF POLY (LACTIC ACID) (PLA)
Poly (lactic acid) (PLA) is a one of substitutions to fossil-based polymers because they have a less influence on the environment. Material sustainability requirements have increased importance of PLA polymers and others similar biopolymers. PLA polymeris an aliphatic polyester, usually produced by ring-opening polymerization or by polycondensation of lactic acid. For the production of PLA components, melt processing is one of the most commonly used techniques. Today, processing technologies of PLA components include injection moulding, hot pressing, spinning, blow moulding, foam moulding, electrospinning, 3D printing, and so on. PLA polymers have better thermal workability than most bio-based polymers. The analysis of mechanical properties, structure in processes, and an appropriate application of PLA is done in this paper. Also this paper summarizes variations in thermal degradation, recyclability, biodegradation and aging during PLA processing and application. The tensile strength and modulus of elasticity of PLA polymers is similar to those of conventional polyesters. But, because PLA polymers are biodegradable, they can change properties if exposed to uncontrolled temperature and humidity conditions. PLA polymers have lower toughness than those of conventional polyesters. Toughness could be improved by development of PLA composites. PLA is safe for use in the manufacturing of products that are in contact with food. European Food Safety Authority (EFSA) recognize PLA as material which can be safely employed as a food packaging material without causing adverse health effects. PLA possesses barrier properties that are just as effective as LDPE and PS. Limited antibacterial properties of PLA can be improved by application of antibacterial agents. Generally high price of PLA polymers limits their application as a packaging material. Biodegradable PLA polymers are suitable for a wide range of industrial, biomedical and pharmaceutical applications, such as material for medical implants, resorbable prostheses, controlled drug release, biodegradable joints and supports for tissue engineering. Development of processing methods is needed for sufficient increase the industrial application of PLA polymers. Suitable methods to minimize the disadvantages of PLA can be blending PLA with other materials, creating micro- and nanocomposites, coating with high-barrier materials, and polymer modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Manufacturing Technologies
International Journal of Modern Manufacturing Technologies Engineering-Industrial and Manufacturing Engineering
CiteScore
0.70
自引率
0.00%
发文量
15
期刊介绍: The main topics of the journal are: Micro & Nano Technologies; Rapid Prototyping Technologies; High Speed Manufacturing Processes; Ecological Technologies in Machine Manufacturing; Manufacturing and Automation; Flexible Manufacturing; New Manufacturing Processes; Design, Control and Exploitation; Assembly and Disassembly; Cold Forming Technologies; Optimization of Experimental Research and Manufacturing Processes; Maintenance, Reliability, Life Cycle Time and Cost; CAD/CAM/CAE/CAX Integrated Systems; Composite Materials Technologies; Non-conventional Technologies; Concurrent Engineering; Virtual Manufacturing; Innovation, Creativity and Industrial Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信