{"title":"数字孪生的多模式融合识别","authors":"Tianzhe Zhou, Xuguang Zhang, Bing Kang, Mingkai Chen","doi":"10.1016/j.dcan.2022.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>The digital twin is the concept of transcending reality, which is the reverse feedback from the real physical space to the virtual digital space. People hold great prospects for this emerging technology. In order to realize the upgrading of the digital twin industrial chain, it is urgent to introduce more modalities, such as vision, haptics, hearing and smell, into the virtual digital space, which assists physical entities and virtual objects in creating a closer connection. Therefore, perceptual understanding and object recognition have become an urgent hot topic in the digital twin. Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality, ignoring the complementarity between multiple modalities. In order to overcome this dilemma, we propose a multimodal fusion network in our article that combines two modalities, visual and haptic, for surface material recognition. On the one hand, the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping. On the other hand, the network is extensible and can be used as a universal architecture to include more modalities. Experiments show that the constructed multimodal fusion network can achieve 99.42% classification accuracy while reducing complexity.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002176/pdfft?md5=5b53302ba67c5d8270cd69b448630eaf&pid=1-s2.0-S2352864822002176-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multimodal fusion recognition for digital twin\",\"authors\":\"Tianzhe Zhou, Xuguang Zhang, Bing Kang, Mingkai Chen\",\"doi\":\"10.1016/j.dcan.2022.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The digital twin is the concept of transcending reality, which is the reverse feedback from the real physical space to the virtual digital space. People hold great prospects for this emerging technology. In order to realize the upgrading of the digital twin industrial chain, it is urgent to introduce more modalities, such as vision, haptics, hearing and smell, into the virtual digital space, which assists physical entities and virtual objects in creating a closer connection. Therefore, perceptual understanding and object recognition have become an urgent hot topic in the digital twin. Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality, ignoring the complementarity between multiple modalities. In order to overcome this dilemma, we propose a multimodal fusion network in our article that combines two modalities, visual and haptic, for surface material recognition. On the one hand, the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping. On the other hand, the network is extensible and can be used as a universal architecture to include more modalities. Experiments show that the constructed multimodal fusion network can achieve 99.42% classification accuracy while reducing complexity.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002176/pdfft?md5=5b53302ba67c5d8270cd69b448630eaf&pid=1-s2.0-S2352864822002176-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002176\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002176","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
The digital twin is the concept of transcending reality, which is the reverse feedback from the real physical space to the virtual digital space. People hold great prospects for this emerging technology. In order to realize the upgrading of the digital twin industrial chain, it is urgent to introduce more modalities, such as vision, haptics, hearing and smell, into the virtual digital space, which assists physical entities and virtual objects in creating a closer connection. Therefore, perceptual understanding and object recognition have become an urgent hot topic in the digital twin. Existing surface material classification schemes often achieve recognition through machine learning or deep learning in a single modality, ignoring the complementarity between multiple modalities. In order to overcome this dilemma, we propose a multimodal fusion network in our article that combines two modalities, visual and haptic, for surface material recognition. On the one hand, the network makes full use of the potential correlations between multiple modalities to deeply mine the modal semantics and complete the data mapping. On the other hand, the network is extensible and can be used as a universal architecture to include more modalities. Experiments show that the constructed multimodal fusion network can achieve 99.42% classification accuracy while reducing complexity.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.