振动信号处理技术在数据驱动齿轮故障诊断中的应用现状

IF 2.5 Q2 ENGINEERING, INDUSTRIAL
Shouhua Zhang, Jiehan Zhou, Erhua Wang, Hong Zhang, Mu Gu, Susanna Pirttikangas
{"title":"振动信号处理技术在数据驱动齿轮故障诊断中的应用现状","authors":"Shouhua Zhang,&nbsp;Jiehan Zhou,&nbsp;Erhua Wang,&nbsp;Hong Zhang,&nbsp;Mu Gu,&nbsp;Susanna Pirttikangas","doi":"10.1049/cim2.12064","DOIUrl":null,"url":null,"abstract":"<p>Gear fault diagnosis (GFD) based on vibration signals is a popular research topic in industry and academia. This paper provides a comprehensive summary and systematic review of vibration signal-based GFD methods in recent years, thereby providing insights for relevant researchers. The authors first introduce the common gear faults and their vibration signal characteristics. The authors overview and compare the common feature extraction methods, such as adaptive mode decomposition, deconvolution, mathematical morphological filtering, and entropy. For each method, this paper introduces its idea, analyses its advantages and disadvantages, and reviews its application in GFD. Then the authors present machine learning-based methods for gear fault recognition and emphasise deep learning-based methods. Moreover, the authors compare different fault recognition methods. Finally, the authors discuss the challenges and opportunities towards data-driven GFD.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"4 4","pages":"249-266"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12064","citationCount":"5","resultStr":"{\"title\":\"State of the art on vibration signal processing towards data-driven gear fault diagnosis\",\"authors\":\"Shouhua Zhang,&nbsp;Jiehan Zhou,&nbsp;Erhua Wang,&nbsp;Hong Zhang,&nbsp;Mu Gu,&nbsp;Susanna Pirttikangas\",\"doi\":\"10.1049/cim2.12064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gear fault diagnosis (GFD) based on vibration signals is a popular research topic in industry and academia. This paper provides a comprehensive summary and systematic review of vibration signal-based GFD methods in recent years, thereby providing insights for relevant researchers. The authors first introduce the common gear faults and their vibration signal characteristics. The authors overview and compare the common feature extraction methods, such as adaptive mode decomposition, deconvolution, mathematical morphological filtering, and entropy. For each method, this paper introduces its idea, analyses its advantages and disadvantages, and reviews its application in GFD. Then the authors present machine learning-based methods for gear fault recognition and emphasise deep learning-based methods. Moreover, the authors compare different fault recognition methods. Finally, the authors discuss the challenges and opportunities towards data-driven GFD.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"4 4\",\"pages\":\"249-266\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12064\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 5

摘要

基于振动信号的齿轮故障诊断(GFD)是目前工业界和学术界研究的热点。本文对近年来基于振动信号的GFD方法进行了全面的总结和系统的回顾,从而为相关研究人员提供一些见解。首先介绍了常见的齿轮故障及其振动信号特征。作者概述并比较了常用的特征提取方法,如自适应模式分解、反卷积、数学形态滤波和熵。针对每种方法,介绍了其思想,分析了其优缺点,并对其在GFD中的应用进行了综述。然后提出了基于机器学习的齿轮故障识别方法,并着重介绍了基于深度学习的方法。并对不同的故障识别方法进行了比较。最后,作者讨论了数据驱动的GFD面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State of the art on vibration signal processing towards data-driven gear fault diagnosis

Gear fault diagnosis (GFD) based on vibration signals is a popular research topic in industry and academia. This paper provides a comprehensive summary and systematic review of vibration signal-based GFD methods in recent years, thereby providing insights for relevant researchers. The authors first introduce the common gear faults and their vibration signal characteristics. The authors overview and compare the common feature extraction methods, such as adaptive mode decomposition, deconvolution, mathematical morphological filtering, and entropy. For each method, this paper introduces its idea, analyses its advantages and disadvantages, and reviews its application in GFD. Then the authors present machine learning-based methods for gear fault recognition and emphasise deep learning-based methods. Moreover, the authors compare different fault recognition methods. Finally, the authors discuss the challenges and opportunities towards data-driven GFD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信