热循环对聚苯乙烯和聚氧乙烯体积和能量性能的影响

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Benoit Minisini, Armand Soldera
{"title":"热循环对聚苯乙烯和聚氧乙烯体积和能量性能的影响","authors":"Benoit Minisini,&nbsp;Armand Soldera","doi":"10.1002/mats.202300008","DOIUrl":null,"url":null,"abstract":"<p>Polymers are known to exhibit hysteresis in their thermal and volumetric properties between cooling and heating at the glass transition. A thorough investigation of this hysteresis using atomistic simulation is not proposed until now. In this work, therefore, the glass transition is studied through heating and cooling protocols at constant rate for two polymers, polystyrene (PS) and polyethylene oxide (PEO), with different molecular weights. To achieve this objective, the analysis is carried out by plotting against temperature, specific volume, coefficient of thermal expansion, total energy, and constant volume heat capacity. The calculated properties for PS and PEO are found to be in good agreement with experimental data, confirming the accuracy of the TraPPE force field for these polymers. The glass transition temperature (<i>T<sub>g</sub></i>) range remains the same regardless of the properties. Moreover, the difference in properties between heating and cooling processes systematically leads to a peak at the same temperature, associated with <i>T<sub>g</sub></i>. Finally, starting from a low temperature, the polymer chains remain mainly in a potential well as the temperature rises, while during cooling the exploration of the configuration space continues up to the temperature where no torsional changes are observed.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202300008","citationCount":"1","resultStr":"{\"title\":\"Volumetric and Energetic Properties of Polystyrene and Polyethylene Oxide Affected by Thermal Cycling\",\"authors\":\"Benoit Minisini,&nbsp;Armand Soldera\",\"doi\":\"10.1002/mats.202300008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymers are known to exhibit hysteresis in their thermal and volumetric properties between cooling and heating at the glass transition. A thorough investigation of this hysteresis using atomistic simulation is not proposed until now. In this work, therefore, the glass transition is studied through heating and cooling protocols at constant rate for two polymers, polystyrene (PS) and polyethylene oxide (PEO), with different molecular weights. To achieve this objective, the analysis is carried out by plotting against temperature, specific volume, coefficient of thermal expansion, total energy, and constant volume heat capacity. The calculated properties for PS and PEO are found to be in good agreement with experimental data, confirming the accuracy of the TraPPE force field for these polymers. The glass transition temperature (<i>T<sub>g</sub></i>) range remains the same regardless of the properties. Moreover, the difference in properties between heating and cooling processes systematically leads to a peak at the same temperature, associated with <i>T<sub>g</sub></i>. Finally, starting from a low temperature, the polymer chains remain mainly in a potential well as the temperature rises, while during cooling the exploration of the configuration space continues up to the temperature where no torsional changes are observed.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202300008\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

已知聚合物在玻璃化转变时,在冷却和加热之间的热学和体积特性中表现出滞后性。直到现在,还没有人提出用原子模拟对这种迟滞进行彻底的研究。因此,在这项工作中,通过恒定速率的加热和冷却协议,研究了两种不同分子量的聚合物,聚苯乙烯(PS)和聚乙烯氧化物(PEO)的玻璃化转变。为了实现这一目标,通过绘制温度、比容、热膨胀系数、总能量和恒体积热容量来进行分析。PS和PEO的计算性质与实验数据吻合较好,证实了TraPPE力场的准确性。无论性质如何,玻璃化转变温度(Tg)范围保持不变。此外,加热和冷却过程之间的特性差异系统地导致在相同温度下的峰值,与Tg相关。最后,从低温开始,随着温度的升高,聚合物链主要保持在势阱中,而在冷却过程中,构型空间的探索继续到没有观察到扭转变化的温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Volumetric and Energetic Properties of Polystyrene and Polyethylene Oxide Affected by Thermal Cycling

Volumetric and Energetic Properties of Polystyrene and Polyethylene Oxide Affected by Thermal Cycling

Polymers are known to exhibit hysteresis in their thermal and volumetric properties between cooling and heating at the glass transition. A thorough investigation of this hysteresis using atomistic simulation is not proposed until now. In this work, therefore, the glass transition is studied through heating and cooling protocols at constant rate for two polymers, polystyrene (PS) and polyethylene oxide (PEO), with different molecular weights. To achieve this objective, the analysis is carried out by plotting against temperature, specific volume, coefficient of thermal expansion, total energy, and constant volume heat capacity. The calculated properties for PS and PEO are found to be in good agreement with experimental data, confirming the accuracy of the TraPPE force field for these polymers. The glass transition temperature (Tg) range remains the same regardless of the properties. Moreover, the difference in properties between heating and cooling processes systematically leads to a peak at the same temperature, associated with Tg. Finally, starting from a low temperature, the polymer chains remain mainly in a potential well as the temperature rises, while during cooling the exploration of the configuration space continues up to the temperature where no torsional changes are observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信