{"title":"语言在多维空间中变化","authors":"Xia Hua, F. Meakins, C. Algy, L. Bromham","doi":"10.1163/22105832-bja10015","DOIUrl":null,"url":null,"abstract":"\n Linguistic coherence—the co-variation of language variants within speaker repertoires—has been proposed as a key process driving the divergence of language dialects. Previous studies on coherence have been often limited by dataset sizes and analyses. We analyze the use of 185 variables across 78 speakers from the Gurindji community in Australia. We use two multivariate statistical approaches to test whether clusters of variables co-vary with generation, family, household, exposure to Gurindji language speakers and education. Using Discriminant Correspondence Analysis, we find generation is the strongest grouping factor of speakers and co-varies with clusters of variants. Using the Generalized Linear Mixed Model, we find these clusters of variants not only represent a gradual loss of Gurindji language use across generations, but also contribute to distinct patterns of language usage in the different generations. Our study demonstrates the use of multivariate analyses on big datasets to identify sociolects, an important step in linking the ‘micro-level’ processes to the ‘macro-level’ outcomes.","PeriodicalId":43113,"journal":{"name":"Language Dynamics and Change","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Language change in multidimensional space\",\"authors\":\"Xia Hua, F. Meakins, C. Algy, L. Bromham\",\"doi\":\"10.1163/22105832-bja10015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Linguistic coherence—the co-variation of language variants within speaker repertoires—has been proposed as a key process driving the divergence of language dialects. Previous studies on coherence have been often limited by dataset sizes and analyses. We analyze the use of 185 variables across 78 speakers from the Gurindji community in Australia. We use two multivariate statistical approaches to test whether clusters of variables co-vary with generation, family, household, exposure to Gurindji language speakers and education. Using Discriminant Correspondence Analysis, we find generation is the strongest grouping factor of speakers and co-varies with clusters of variants. Using the Generalized Linear Mixed Model, we find these clusters of variants not only represent a gradual loss of Gurindji language use across generations, but also contribute to distinct patterns of language usage in the different generations. Our study demonstrates the use of multivariate analyses on big datasets to identify sociolects, an important step in linking the ‘micro-level’ processes to the ‘macro-level’ outcomes.\",\"PeriodicalId\":43113,\"journal\":{\"name\":\"Language Dynamics and Change\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Dynamics and Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/22105832-bja10015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Dynamics and Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/22105832-bja10015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Linguistic coherence—the co-variation of language variants within speaker repertoires—has been proposed as a key process driving the divergence of language dialects. Previous studies on coherence have been often limited by dataset sizes and analyses. We analyze the use of 185 variables across 78 speakers from the Gurindji community in Australia. We use two multivariate statistical approaches to test whether clusters of variables co-vary with generation, family, household, exposure to Gurindji language speakers and education. Using Discriminant Correspondence Analysis, we find generation is the strongest grouping factor of speakers and co-varies with clusters of variants. Using the Generalized Linear Mixed Model, we find these clusters of variants not only represent a gradual loss of Gurindji language use across generations, but also contribute to distinct patterns of language usage in the different generations. Our study demonstrates the use of multivariate analyses on big datasets to identify sociolects, an important step in linking the ‘micro-level’ processes to the ‘macro-level’ outcomes.
期刊介绍:
Language Dynamics and Change (LDC) is an international peer-reviewed journal that covers both new and traditional aspects of the study of language change. Work on any language or language family is welcomed, as long as it bears on topics that are also of theoretical interest. A particular focus is on new developments in the field arising from the accumulation of extensive databases of dialect variation and typological distributions, spoken corpora, parallel texts, and comparative lexicons, which allow for the application of new types of quantitative approaches to diachronic linguistics. Moreover, the journal will serve as an outlet for increasingly important interdisciplinary work on such topics as the evolution of language, archaeology and linguistics (‘archaeolinguistics’), human genetic and linguistic prehistory, and the computational modeling of language dynamics.