边界实张量优化通过数值范围

IF 0.7 4区 数学 Q2 Mathematics
N. Johnston, Logan Pipes
{"title":"边界实张量优化通过数值范围","authors":"N. Johnston, Logan Pipes","doi":"10.13001/ela.2023.7635","DOIUrl":null,"url":null,"abstract":"A new method of using the numerical range of a matrix to bound the optimal value of certain optimization problems over real tensor product vectors is presented. This bound is stronger than the trivial bounds based on eigenvalues and can be computed significantly faster than bounds provided by semidefinite programming relaxations. Numerous applications to other hard linear algebra problems are discussed, such as showing that a real subspace of matrices contains no rank-one matrix, and showing that a linear map acting on matrices is positive.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding real tensor optimizations via the numerical range\",\"authors\":\"N. Johnston, Logan Pipes\",\"doi\":\"10.13001/ela.2023.7635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method of using the numerical range of a matrix to bound the optimal value of certain optimization problems over real tensor product vectors is presented. This bound is stronger than the trivial bounds based on eigenvalues and can be computed significantly faster than bounds provided by semidefinite programming relaxations. Numerous applications to other hard linear algebra problems are discussed, such as showing that a real subspace of matrices contains no rank-one matrix, and showing that a linear map acting on matrices is positive.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7635\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用矩阵的数值范围来约束实张量积向量上某些优化问题的最优值的新方法。该界比基于特征值的平凡界更强,并且可以比半定规划松弛提供的界更快地计算。讨论了在其他硬线性代数问题中的许多应用,例如证明矩阵的实子空间不包含秩一矩阵,以及证明作用于矩阵的线性映射是正的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding real tensor optimizations via the numerical range
A new method of using the numerical range of a matrix to bound the optimal value of certain optimization problems over real tensor product vectors is presented. This bound is stronger than the trivial bounds based on eigenvalues and can be computed significantly faster than bounds provided by semidefinite programming relaxations. Numerous applications to other hard linear algebra problems are discussed, such as showing that a real subspace of matrices contains no rank-one matrix, and showing that a linear map acting on matrices is positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信