基于偏好的多目标多智能体寻径

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Florence Ho, Shinji Nakadai
{"title":"基于偏好的多目标多智能体寻径","authors":"Florence Ho,&nbsp;Shinji Nakadai","doi":"10.1007/s10458-022-09593-3","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-Agent Path Finding (MAPF) is a well-studied problem that aims to generate collision-free paths for multiple agents while optimizing a single objective. However, many real-world applications require the consideration of multiple objectives. In this paper, we address a novel extension of MAPF, Multi-Objective MAPF (MOMAPF), that aims to optimize multiple given objectives while computing collision-free paths for all agents. In particular, we aim to incorporate the preferences of a decision maker over multi-agent path planning. Thus, we propose to solve a scalarized MOMAPF, whereby the given preferences of a decision maker are reflected by a weight value associated to each given objective and all weighted objectives are combined into one scalar. We introduce a solver for scalarized MOMAPF based on Conflict-Based Search (CBS) that incorporates an adapted path planner based on an evolutionary algorithm, the Genetic Algorithm (GA). We also introduce three practical objectives to consider in path planning: efficiency, safety, and smoothness. We evaluate the performance of our proposed method in function of the input parameters of GA on experimental simulations and we analyze its efficiency in providing conflict-free solutions within a fixed time.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-022-09593-3.pdf","citationCount":"3","resultStr":"{\"title\":\"Preference-based multi-objective multi-agent path finding\",\"authors\":\"Florence Ho,&nbsp;Shinji Nakadai\",\"doi\":\"10.1007/s10458-022-09593-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-Agent Path Finding (MAPF) is a well-studied problem that aims to generate collision-free paths for multiple agents while optimizing a single objective. However, many real-world applications require the consideration of multiple objectives. In this paper, we address a novel extension of MAPF, Multi-Objective MAPF (MOMAPF), that aims to optimize multiple given objectives while computing collision-free paths for all agents. In particular, we aim to incorporate the preferences of a decision maker over multi-agent path planning. Thus, we propose to solve a scalarized MOMAPF, whereby the given preferences of a decision maker are reflected by a weight value associated to each given objective and all weighted objectives are combined into one scalar. We introduce a solver for scalarized MOMAPF based on Conflict-Based Search (CBS) that incorporates an adapted path planner based on an evolutionary algorithm, the Genetic Algorithm (GA). We also introduce three practical objectives to consider in path planning: efficiency, safety, and smoothness. We evaluate the performance of our proposed method in function of the input parameters of GA on experimental simulations and we analyze its efficiency in providing conflict-free solutions within a fixed time.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10458-022-09593-3.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-022-09593-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-022-09593-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

多代理路径查找(MAPF)是一个研究得很好的问题,旨在为多个代理生成无冲突路径,同时优化单个目标。然而,许多现实世界的应用程序需要考虑多个目标。在本文中,我们提出了MAPF的一个新扩展,即多目标MAPF(MOMAPF),旨在优化多个给定目标,同时计算所有代理的无碰撞路径。特别是,我们的目标是结合决策者对多智能体路径规划的偏好。因此,我们提出求解一个标量化MOMAPF,通过该算法,决策者的给定偏好由与每个给定目标相关的权重值反映,并且所有加权目标都组合成一个标量。我们介绍了一种基于冲突搜索(CBS)的标量化MOMAPF求解器,该求解器结合了基于进化算法的自适应路径规划器,即遗传算法(GA)。我们还介绍了路径规划中需要考虑的三个实际目标:效率、安全性和平滑性。我们在实验模拟中评估了我们提出的方法在GA输入参数函数中的性能,并分析了它在固定时间内提供无冲突解决方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preference-based multi-objective multi-agent path finding

Preference-based multi-objective multi-agent path finding

Multi-Agent Path Finding (MAPF) is a well-studied problem that aims to generate collision-free paths for multiple agents while optimizing a single objective. However, many real-world applications require the consideration of multiple objectives. In this paper, we address a novel extension of MAPF, Multi-Objective MAPF (MOMAPF), that aims to optimize multiple given objectives while computing collision-free paths for all agents. In particular, we aim to incorporate the preferences of a decision maker over multi-agent path planning. Thus, we propose to solve a scalarized MOMAPF, whereby the given preferences of a decision maker are reflected by a weight value associated to each given objective and all weighted objectives are combined into one scalar. We introduce a solver for scalarized MOMAPF based on Conflict-Based Search (CBS) that incorporates an adapted path planner based on an evolutionary algorithm, the Genetic Algorithm (GA). We also introduce three practical objectives to consider in path planning: efficiency, safety, and smoothness. We evaluate the performance of our proposed method in function of the input parameters of GA on experimental simulations and we analyze its efficiency in providing conflict-free solutions within a fixed time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信