土工格栅加筋粘性土偏心加载方基础极限承载力研究

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hussam Aldeen J. Hassan, R. R. Shakir
{"title":"土工格栅加筋粘性土偏心加载方基础极限承载力研究","authors":"Hussam Aldeen J. Hassan, R. R. Shakir","doi":"10.1515/jmbm-2022-0035","DOIUrl":null,"url":null,"abstract":"Abstract Construction of shallow foundations on weak cohesive soils have limited load-bearing capacity and excessive vertical displacement. This may cause structural damage and reduce the structure’s durability. Traditionally, weak cohesive soils are excavated and replaced with another stronger material layer, or the foundation is enlarged. These procedures are costly and time-consuming. However, these soils are also difficult to stabilize due to their low permeability and slow consolidation. Therefore, it has become necessary to use geosynthetic material. In this study, a square footing model with an eccentric load was tested in geogrid-reinforced clay. The adopted load eccentricity ratios were 0.05 to 0.1, 0.16, and 0.25. Twenty-one tests were executed to estimate the reinforcement influence and eccentricity on the ultimate bearing capacity (UBC). The geogrid improved the BC by 2.27 and 2.12 times compared to unreinforced soil for centrical and eccentrical loads, respectively. The best first layer ratio and the best number of reinforcements were found to be 0.35 and 4. A new equation for BCR with knowing the number of reinforcing layers was proposed and compared with other studies’ outcomes. It was concluded that the foundation tilts in a linear relationship with eccentricity, with a smaller rate inside the core than outside.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"31 1","pages":"337 - 344"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultimate bearing capacity of eccentrically loaded square footing over geogrid-reinforced cohesive soil\",\"authors\":\"Hussam Aldeen J. Hassan, R. R. Shakir\",\"doi\":\"10.1515/jmbm-2022-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Construction of shallow foundations on weak cohesive soils have limited load-bearing capacity and excessive vertical displacement. This may cause structural damage and reduce the structure’s durability. Traditionally, weak cohesive soils are excavated and replaced with another stronger material layer, or the foundation is enlarged. These procedures are costly and time-consuming. However, these soils are also difficult to stabilize due to their low permeability and slow consolidation. Therefore, it has become necessary to use geosynthetic material. In this study, a square footing model with an eccentric load was tested in geogrid-reinforced clay. The adopted load eccentricity ratios were 0.05 to 0.1, 0.16, and 0.25. Twenty-one tests were executed to estimate the reinforcement influence and eccentricity on the ultimate bearing capacity (UBC). The geogrid improved the BC by 2.27 and 2.12 times compared to unreinforced soil for centrical and eccentrical loads, respectively. The best first layer ratio and the best number of reinforcements were found to be 0.35 and 4. A new equation for BCR with knowing the number of reinforcing layers was proposed and compared with other studies’ outcomes. It was concluded that the foundation tilts in a linear relationship with eccentricity, with a smaller rate inside the core than outside.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\"31 1\",\"pages\":\"337 - 344\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在弱粘性土上进行浅基础施工,存在承载能力有限、竖向位移过大的问题。这可能会造成结构损坏,降低结构的耐久性。传统的做法是挖掘弱粘性土并用另一层较强的材料层代替,或者扩大地基。这些程序既昂贵又费时。然而,由于其渗透性低,固结缓慢,这些土壤也难以稳定。因此,使用土工合成材料已成为必要。在土工格栅加筋粘土中进行了偏心荷载作用下的方基础模型试验。采用的载荷偏心比分别为0.05 ~ 0.1、0.16和0.25。进行了21次试验,以估计配筋和偏心对极限承载力的影响。在中心荷载和偏心荷载作用下,土工格栅比未加筋土的BC分别提高了2.27倍和2.12倍。最佳第一层比为0.35,最佳加筋数为4。提出了一个新的已知加筋层数的BCR方程,并与其他研究结果进行了比较。结果表明,地基倾斜与离心率呈线性关系,且核心内部的倾斜比核心外部的倾斜要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultimate bearing capacity of eccentrically loaded square footing over geogrid-reinforced cohesive soil
Abstract Construction of shallow foundations on weak cohesive soils have limited load-bearing capacity and excessive vertical displacement. This may cause structural damage and reduce the structure’s durability. Traditionally, weak cohesive soils are excavated and replaced with another stronger material layer, or the foundation is enlarged. These procedures are costly and time-consuming. However, these soils are also difficult to stabilize due to their low permeability and slow consolidation. Therefore, it has become necessary to use geosynthetic material. In this study, a square footing model with an eccentric load was tested in geogrid-reinforced clay. The adopted load eccentricity ratios were 0.05 to 0.1, 0.16, and 0.25. Twenty-one tests were executed to estimate the reinforcement influence and eccentricity on the ultimate bearing capacity (UBC). The geogrid improved the BC by 2.27 and 2.12 times compared to unreinforced soil for centrical and eccentrical loads, respectively. The best first layer ratio and the best number of reinforcements were found to be 0.35 and 4. A new equation for BCR with knowing the number of reinforcing layers was proposed and compared with other studies’ outcomes. It was concluded that the foundation tilts in a linear relationship with eccentricity, with a smaller rate inside the core than outside.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信