{"title":"实数上变指数Lebesgue空间的指数逼近","authors":"R. Akgün","doi":"10.33205/cma.1167459","DOIUrl":null,"url":null,"abstract":"Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on $\\boldsymbol{R}:=\\left( -\\infty ,+\\infty \\right) $. To do this, we employ a transference theorem which produce norm inequalities starting from norm inequalities in $\\mathcal{C}(\\boldsymbol{R})$, the class of bounded uniformly continuous functions defined on $\\boldsymbol{R}$. Let $B\\subseteq \\boldsymbol{R}$ be a measurable set, $p\\left( x\\right) :B\\rightarrow \\lbrack 1,\\infty )$ be a measurable function. For the class of functions $f$ belonging to variable exponent Lebesgue spaces $L_{p\\left( x\\right) }\\left( B\\right) $, we consider difference operator $\\left( I-T_{\\delta }\\right)^{r}f\\left( \\cdot \\right) $ under the condition that $p(x)$ satisfies the log-Hölder continuity condition and $1\\leq \\mathop{\\rm ess \\; inf} \\limits\\nolimits_{x\\in B}p(x)$, $\\mathop{\\rm ess \\; sup}\\limits\\nolimits_{x\\in B}p(x)<\\infty $, where $I$ is the identity operator, $r\\in \\mathrm{N}:=\\left\\{ 1,2,3,\\cdots \\right\\} $, $\\delta \\geq 0$ and\n $$\n T_{\\delta }f\\left( x\\right) =\\frac{1}{\\delta }\\int\\nolimits_{0}^{\\delta\n }f\\left( x+t\\right) dt, x\\in \\boldsymbol{R},\n T_{0}\\equiv I,\n $$\n is the forward Steklov operator. It is proved that\n $$\n \\left\\Vert \\left( I-T_{\\delta }\\right) ^{r}f\\right\\Vert _{p\\left( \\cdot\n \\right) }\n $$\n is a suitable measure of smoothness for functions in $L_{p\\left( x\\right)\n }\\left( B\\right) $, where $\\left\\Vert \\cdot \\right\\Vert _{p\\left( \\cdot\n \\right) }$ is Luxemburg norm in $L_{p\\left( x\\right) }\\left( B\\right) .$ We\n obtain main properties of difference operator $\\left\\Vert \\left( I-T_{\\delta\n }\\right) ^{r}f\\right\\Vert _{p\\left( \\cdot \\right) }$ in $L_{p\\left( x\\right)\n }\\left( B\\right) .$ We give proof of direct and inverse theorems of\n approximation by IFFD in $L_{p\\left( x\\right) }\\left( \\boldsymbol{R}\\right)\n . $","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential approximation in variable exponent Lebesgue spaces on the real line\",\"authors\":\"R. Akgün\",\"doi\":\"10.33205/cma.1167459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on $\\\\boldsymbol{R}:=\\\\left( -\\\\infty ,+\\\\infty \\\\right) $. To do this, we employ a transference theorem which produce norm inequalities starting from norm inequalities in $\\\\mathcal{C}(\\\\boldsymbol{R})$, the class of bounded uniformly continuous functions defined on $\\\\boldsymbol{R}$. Let $B\\\\subseteq \\\\boldsymbol{R}$ be a measurable set, $p\\\\left( x\\\\right) :B\\\\rightarrow \\\\lbrack 1,\\\\infty )$ be a measurable function. For the class of functions $f$ belonging to variable exponent Lebesgue spaces $L_{p\\\\left( x\\\\right) }\\\\left( B\\\\right) $, we consider difference operator $\\\\left( I-T_{\\\\delta }\\\\right)^{r}f\\\\left( \\\\cdot \\\\right) $ under the condition that $p(x)$ satisfies the log-Hölder continuity condition and $1\\\\leq \\\\mathop{\\\\rm ess \\\\; inf} \\\\limits\\\\nolimits_{x\\\\in B}p(x)$, $\\\\mathop{\\\\rm ess \\\\; sup}\\\\limits\\\\nolimits_{x\\\\in B}p(x)<\\\\infty $, where $I$ is the identity operator, $r\\\\in \\\\mathrm{N}:=\\\\left\\\\{ 1,2,3,\\\\cdots \\\\right\\\\} $, $\\\\delta \\\\geq 0$ and\\n $$\\n T_{\\\\delta }f\\\\left( x\\\\right) =\\\\frac{1}{\\\\delta }\\\\int\\\\nolimits_{0}^{\\\\delta\\n }f\\\\left( x+t\\\\right) dt, x\\\\in \\\\boldsymbol{R},\\n T_{0}\\\\equiv I,\\n $$\\n is the forward Steklov operator. It is proved that\\n $$\\n \\\\left\\\\Vert \\\\left( I-T_{\\\\delta }\\\\right) ^{r}f\\\\right\\\\Vert _{p\\\\left( \\\\cdot\\n \\\\right) }\\n $$\\n is a suitable measure of smoothness for functions in $L_{p\\\\left( x\\\\right)\\n }\\\\left( B\\\\right) $, where $\\\\left\\\\Vert \\\\cdot \\\\right\\\\Vert _{p\\\\left( \\\\cdot\\n \\\\right) }$ is Luxemburg norm in $L_{p\\\\left( x\\\\right) }\\\\left( B\\\\right) .$ We\\n obtain main properties of difference operator $\\\\left\\\\Vert \\\\left( I-T_{\\\\delta\\n }\\\\right) ^{r}f\\\\right\\\\Vert _{p\\\\left( \\\\cdot \\\\right) }$ in $L_{p\\\\left( x\\\\right)\\n }\\\\left( B\\\\right) .$ We give proof of direct and inverse theorems of\\n approximation by IFFD in $L_{p\\\\left( x\\\\right) }\\\\left( \\\\boldsymbol{R}\\\\right)\\n . $\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1167459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1167459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exponential approximation in variable exponent Lebesgue spaces on the real line
Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on $\boldsymbol{R}:=\left( -\infty ,+\infty \right) $. To do this, we employ a transference theorem which produce norm inequalities starting from norm inequalities in $\mathcal{C}(\boldsymbol{R})$, the class of bounded uniformly continuous functions defined on $\boldsymbol{R}$. Let $B\subseteq \boldsymbol{R}$ be a measurable set, $p\left( x\right) :B\rightarrow \lbrack 1,\infty )$ be a measurable function. For the class of functions $f$ belonging to variable exponent Lebesgue spaces $L_{p\left( x\right) }\left( B\right) $, we consider difference operator $\left( I-T_{\delta }\right)^{r}f\left( \cdot \right) $ under the condition that $p(x)$ satisfies the log-Hölder continuity condition and $1\leq \mathop{\rm ess \; inf} \limits\nolimits_{x\in B}p(x)$, $\mathop{\rm ess \; sup}\limits\nolimits_{x\in B}p(x)<\infty $, where $I$ is the identity operator, $r\in \mathrm{N}:=\left\{ 1,2,3,\cdots \right\} $, $\delta \geq 0$ and
$$
T_{\delta }f\left( x\right) =\frac{1}{\delta }\int\nolimits_{0}^{\delta
}f\left( x+t\right) dt, x\in \boldsymbol{R},
T_{0}\equiv I,
$$
is the forward Steklov operator. It is proved that
$$
\left\Vert \left( I-T_{\delta }\right) ^{r}f\right\Vert _{p\left( \cdot
\right) }
$$
is a suitable measure of smoothness for functions in $L_{p\left( x\right)
}\left( B\right) $, where $\left\Vert \cdot \right\Vert _{p\left( \cdot
\right) }$ is Luxemburg norm in $L_{p\left( x\right) }\left( B\right) .$ We
obtain main properties of difference operator $\left\Vert \left( I-T_{\delta
}\right) ^{r}f\right\Vert _{p\left( \cdot \right) }$ in $L_{p\left( x\right)
}\left( B\right) .$ We give proof of direct and inverse theorems of
approximation by IFFD in $L_{p\left( x\right) }\left( \boldsymbol{R}\right)
. $