{"title":"基于Wilf–Zeilberger的巴塞尔问题解决方案及其应用","authors":"J. M. Campbell","doi":"10.47443/dml.2022.030","DOIUrl":null,"url":null,"abstract":"Wilf [Accelerated series for universal constants, by the WZ method, Discrete Math. Theor. Comput. Sci. 3 (1999) 189–192] applied Zeilberger’s algorithm to obtain an accelerated version of the famous series (cid:80) ∞ k =1 1 /k 2 = π 2 / 6 . However, if we write the Basel series (cid:80) ∞ k =1 1 /k 2 as a 3 F 2 (1) -series, it is not obvious as to how to determine a Wilf–Zeilberger (WZ) pair or a WZ proof certificate that may be used to formulate a proof for evaluating this 3 F 2 (1) -expression. In this article, using the WZ method, we prove a remarkable identity for a 3 F 2 (1) -series with three free parameters that Maple 2020 is not able to evaluate directly, and we apply our WZ proof of this identity to obtain a new proof of the famous formula ζ (2) = π 2 / 6 . By applying partial derivative operators to our WZ-derived 3 F 2 (1) -identity, we obtain an identity involving binomial-harmonic sums that were recently considered by Wang and Chu [Series with harmonic-like numbers and squared binomial coefficients, Rocky Mountain J. Math. , In press], and we succeed in solving some open problems given by Wang and Chu on series involving harmonic-type numbers and squared binomial coefficients. Classification: 11Y60, 33F10.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Wilf–Zeilberger–Based Solution to the Basel Problem With Applications\",\"authors\":\"J. M. Campbell\",\"doi\":\"10.47443/dml.2022.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wilf [Accelerated series for universal constants, by the WZ method, Discrete Math. Theor. Comput. Sci. 3 (1999) 189–192] applied Zeilberger’s algorithm to obtain an accelerated version of the famous series (cid:80) ∞ k =1 1 /k 2 = π 2 / 6 . However, if we write the Basel series (cid:80) ∞ k =1 1 /k 2 as a 3 F 2 (1) -series, it is not obvious as to how to determine a Wilf–Zeilberger (WZ) pair or a WZ proof certificate that may be used to formulate a proof for evaluating this 3 F 2 (1) -expression. In this article, using the WZ method, we prove a remarkable identity for a 3 F 2 (1) -series with three free parameters that Maple 2020 is not able to evaluate directly, and we apply our WZ proof of this identity to obtain a new proof of the famous formula ζ (2) = π 2 / 6 . By applying partial derivative operators to our WZ-derived 3 F 2 (1) -identity, we obtain an identity involving binomial-harmonic sums that were recently considered by Wang and Chu [Series with harmonic-like numbers and squared binomial coefficients, Rocky Mountain J. Math. , In press], and we succeed in solving some open problems given by Wang and Chu on series involving harmonic-type numbers and squared binomial coefficients. Classification: 11Y60, 33F10.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Wilf–Zeilberger–Based Solution to the Basel Problem With Applications
Wilf [Accelerated series for universal constants, by the WZ method, Discrete Math. Theor. Comput. Sci. 3 (1999) 189–192] applied Zeilberger’s algorithm to obtain an accelerated version of the famous series (cid:80) ∞ k =1 1 /k 2 = π 2 / 6 . However, if we write the Basel series (cid:80) ∞ k =1 1 /k 2 as a 3 F 2 (1) -series, it is not obvious as to how to determine a Wilf–Zeilberger (WZ) pair or a WZ proof certificate that may be used to formulate a proof for evaluating this 3 F 2 (1) -expression. In this article, using the WZ method, we prove a remarkable identity for a 3 F 2 (1) -series with three free parameters that Maple 2020 is not able to evaluate directly, and we apply our WZ proof of this identity to obtain a new proof of the famous formula ζ (2) = π 2 / 6 . By applying partial derivative operators to our WZ-derived 3 F 2 (1) -identity, we obtain an identity involving binomial-harmonic sums that were recently considered by Wang and Chu [Series with harmonic-like numbers and squared binomial coefficients, Rocky Mountain J. Math. , In press], and we succeed in solving some open problems given by Wang and Chu on series involving harmonic-type numbers and squared binomial coefficients. Classification: 11Y60, 33F10.