{"title":"通过深度学习识别商业信息——分析基于互联网的物流投标平台的投标文件","authors":"Yingwen Yu, Jing Ma","doi":"10.1108/dta-08-2022-0308","DOIUrl":null,"url":null,"abstract":"PurposeThe tender documents, an essential data source for internet-based logistics tendering platforms, incorporate massive fine-grained data, ranging from information on tenderee, shipping location and shipping items. Automated information extraction in this area is, however, under-researched, making the extraction process a time- and effort-consuming one. For Chinese logistics tender entities, in particular, existing named entity recognition (NER) solutions are mostly unsuitable as they involve domain-specific terminologies and possess different semantic features.Design/methodology/approachTo tackle this problem, a novel lattice long short-term memory (LSTM) model, combining a variant contextual feature representation and a conditional random field (CRF) layer, is proposed in this paper for identifying valuable entities from logistic tender documents. Instead of traditional word embedding, the proposed model uses the pretrained Bidirectional Encoder Representations from Transformers (BERT) model as input to augment the contextual feature representation. Subsequently, with the Lattice-LSTM model, the information of characters and words is effectively utilized to avoid error segmentation.FindingsThe proposed model is then verified by the Chinese logistic tender named entity corpus. Moreover, the results suggest that the proposed model excels in the logistics tender corpus over other mainstream NER models. The proposed model underpins the automatic extraction of logistics tender information, enabling logistic companies to perceive the ever-changing market trends and make far-sighted logistic decisions.Originality/value(1) A practical model for logistic tender NER is proposed in the manuscript. By employing and fine-tuning BERT into the downstream task with a small amount of data, the experiment results show that the model has a better performance than other existing models. This is the first study, to the best of the authors' knowledge, to extract named entities from Chinese logistic tender documents. (2) A real logistic tender corpus for practical use is constructed and a program of the model for online-processing real logistic tender documents is developed in this work. The authors believe that the model will facilitate logistic companies in converting unstructured documents to structured data and further perceive the ever-changing market trends to make far-sighted logistic decisions.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying business information through deep learning: analyzing the tender documents of an Internet-based logistics bidding platform\",\"authors\":\"Yingwen Yu, Jing Ma\",\"doi\":\"10.1108/dta-08-2022-0308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe tender documents, an essential data source for internet-based logistics tendering platforms, incorporate massive fine-grained data, ranging from information on tenderee, shipping location and shipping items. Automated information extraction in this area is, however, under-researched, making the extraction process a time- and effort-consuming one. For Chinese logistics tender entities, in particular, existing named entity recognition (NER) solutions are mostly unsuitable as they involve domain-specific terminologies and possess different semantic features.Design/methodology/approachTo tackle this problem, a novel lattice long short-term memory (LSTM) model, combining a variant contextual feature representation and a conditional random field (CRF) layer, is proposed in this paper for identifying valuable entities from logistic tender documents. Instead of traditional word embedding, the proposed model uses the pretrained Bidirectional Encoder Representations from Transformers (BERT) model as input to augment the contextual feature representation. Subsequently, with the Lattice-LSTM model, the information of characters and words is effectively utilized to avoid error segmentation.FindingsThe proposed model is then verified by the Chinese logistic tender named entity corpus. Moreover, the results suggest that the proposed model excels in the logistics tender corpus over other mainstream NER models. The proposed model underpins the automatic extraction of logistics tender information, enabling logistic companies to perceive the ever-changing market trends and make far-sighted logistic decisions.Originality/value(1) A practical model for logistic tender NER is proposed in the manuscript. By employing and fine-tuning BERT into the downstream task with a small amount of data, the experiment results show that the model has a better performance than other existing models. This is the first study, to the best of the authors' knowledge, to extract named entities from Chinese logistic tender documents. (2) A real logistic tender corpus for practical use is constructed and a program of the model for online-processing real logistic tender documents is developed in this work. The authors believe that the model will facilitate logistic companies in converting unstructured documents to structured data and further perceive the ever-changing market trends to make far-sighted logistic decisions.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-08-2022-0308\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-08-2022-0308","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Identifying business information through deep learning: analyzing the tender documents of an Internet-based logistics bidding platform
PurposeThe tender documents, an essential data source for internet-based logistics tendering platforms, incorporate massive fine-grained data, ranging from information on tenderee, shipping location and shipping items. Automated information extraction in this area is, however, under-researched, making the extraction process a time- and effort-consuming one. For Chinese logistics tender entities, in particular, existing named entity recognition (NER) solutions are mostly unsuitable as they involve domain-specific terminologies and possess different semantic features.Design/methodology/approachTo tackle this problem, a novel lattice long short-term memory (LSTM) model, combining a variant contextual feature representation and a conditional random field (CRF) layer, is proposed in this paper for identifying valuable entities from logistic tender documents. Instead of traditional word embedding, the proposed model uses the pretrained Bidirectional Encoder Representations from Transformers (BERT) model as input to augment the contextual feature representation. Subsequently, with the Lattice-LSTM model, the information of characters and words is effectively utilized to avoid error segmentation.FindingsThe proposed model is then verified by the Chinese logistic tender named entity corpus. Moreover, the results suggest that the proposed model excels in the logistics tender corpus over other mainstream NER models. The proposed model underpins the automatic extraction of logistics tender information, enabling logistic companies to perceive the ever-changing market trends and make far-sighted logistic decisions.Originality/value(1) A practical model for logistic tender NER is proposed in the manuscript. By employing and fine-tuning BERT into the downstream task with a small amount of data, the experiment results show that the model has a better performance than other existing models. This is the first study, to the best of the authors' knowledge, to extract named entities from Chinese logistic tender documents. (2) A real logistic tender corpus for practical use is constructed and a program of the model for online-processing real logistic tender documents is developed in this work. The authors believe that the model will facilitate logistic companies in converting unstructured documents to structured data and further perceive the ever-changing market trends to make far-sighted logistic decisions.