apci-skikda液化过程的热力学分析

IF 1.1 Q3 Engineering
C. Derbal, Abdallah Haouama
{"title":"apci-skikda液化过程的热力学分析","authors":"C. Derbal, Abdallah Haouama","doi":"10.18186/thermal.1300835","DOIUrl":null,"url":null,"abstract":"In this paper, the mixed refrigeration cycle of Skikda APCI (Air Products and Chemicals Inc.) process in Algeria was studied thermodynamically in order to determine the optimal operat-ing conditions. The energy and exergy balance equations for each process component were es-tablished. The distribution of the exergy destruction of the basic cycle equipment revealed that the compressors had the highest exergy destruction rate. The effects of operating conditions on performance coefficient of the cycle (COP) and exergy efficiency of the APCI process were evaluated; mainly the inlet temperature of the compressors, natural gas (NG) temperature af-ter cooling in the main cryogenic heat exchanger (MCHE) and inlet temperature of the mixed refrigerant (MR) expansion valve. The results of the numerical simulation validated using Aspen HYSYS software indicate that the COP and exergy efficiency of the basic cycle are 2.66 and 59.99% respectively. These results can be improved by reducing the inlet temperature of the compressor and the expander as well as that of the NG after cooling in the MCHE. Finally, the results of the optimization performed using the genetic algorithms (GA) are in agreement with those of the literature. They show signs of improvement in the COP and exergy efficiency of the APCI process by 1.48% and 3.64% respectively compared to the basic cycle.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic analysis of the apci skikda liquefaction process\",\"authors\":\"C. Derbal, Abdallah Haouama\",\"doi\":\"10.18186/thermal.1300835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the mixed refrigeration cycle of Skikda APCI (Air Products and Chemicals Inc.) process in Algeria was studied thermodynamically in order to determine the optimal operat-ing conditions. The energy and exergy balance equations for each process component were es-tablished. The distribution of the exergy destruction of the basic cycle equipment revealed that the compressors had the highest exergy destruction rate. The effects of operating conditions on performance coefficient of the cycle (COP) and exergy efficiency of the APCI process were evaluated; mainly the inlet temperature of the compressors, natural gas (NG) temperature af-ter cooling in the main cryogenic heat exchanger (MCHE) and inlet temperature of the mixed refrigerant (MR) expansion valve. The results of the numerical simulation validated using Aspen HYSYS software indicate that the COP and exergy efficiency of the basic cycle are 2.66 and 59.99% respectively. These results can be improved by reducing the inlet temperature of the compressor and the expander as well as that of the NG after cooling in the MCHE. Finally, the results of the optimization performed using the genetic algorithms (GA) are in agreement with those of the literature. They show signs of improvement in the COP and exergy efficiency of the APCI process by 1.48% and 3.64% respectively compared to the basic cycle.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1300835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1300835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文对阿尔及利亚Skikda APCI(Air Products and Chemicals股份有限公司)工艺的混合制冷循环进行了热力学研究,以确定最佳运行条件。建立了各工艺部件的能量和火用平衡方程。基本循环设备的火用破坏分布表明,压缩机的火用损坏率最高。评价了运行条件对APCI工艺循环性能系数(COP)和火用效率的影响;主要是压缩机的入口温度、在主低温热交换器(MCHE)中冷却后的天然气(NG)温度和混合制冷剂(MR)膨胀阀的入口温度。使用Aspen HYSYS软件验证的数值模拟结果表明,基本循环的COP和火用效率分别为2.66%和59.99%。这些结果可以通过降低压缩机和膨胀机的入口温度以及在MCHE中冷却后的NG的入口温度来改善。最后,使用遗传算法(GA)进行的优化结果与文献中的结果一致。与基本循环相比,APCI工艺的COP和火用效率分别提高了1.48%和3.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic analysis of the apci skikda liquefaction process
In this paper, the mixed refrigeration cycle of Skikda APCI (Air Products and Chemicals Inc.) process in Algeria was studied thermodynamically in order to determine the optimal operat-ing conditions. The energy and exergy balance equations for each process component were es-tablished. The distribution of the exergy destruction of the basic cycle equipment revealed that the compressors had the highest exergy destruction rate. The effects of operating conditions on performance coefficient of the cycle (COP) and exergy efficiency of the APCI process were evaluated; mainly the inlet temperature of the compressors, natural gas (NG) temperature af-ter cooling in the main cryogenic heat exchanger (MCHE) and inlet temperature of the mixed refrigerant (MR) expansion valve. The results of the numerical simulation validated using Aspen HYSYS software indicate that the COP and exergy efficiency of the basic cycle are 2.66 and 59.99% respectively. These results can be improved by reducing the inlet temperature of the compressor and the expander as well as that of the NG after cooling in the MCHE. Finally, the results of the optimization performed using the genetic algorithms (GA) are in agreement with those of the literature. They show signs of improvement in the COP and exergy efficiency of the APCI process by 1.48% and 3.64% respectively compared to the basic cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信