分数平均曲率流量-每个曲率介质的流量

IF 0.2 Q4 MATHEMATICS
E. Cinti
{"title":"分数平均曲率流量-每个曲率介质的流量","authors":"E. Cinti","doi":"10.6092/ISSN.2240-2829/10576","DOIUrl":null,"url":null,"abstract":"In this note, we present some recent results in the study of the fractional mean curvature flow, that is a geometric evolution of the boundary of a set whose speed is given by the fractional mean curvature. The flow under consideration is of nonlocal type and presents several interesting difference with respect to the classical mean curvature flow. We will describe the main contributions in this field, with particular emphasis on some tipically nonlocal behaviors which are in contrast with the classical local case.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"11 1","pages":"18-43"},"PeriodicalIF":0.2000,"publicationDate":"2020-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE FRACTIONAL MEAN CURVATURE FLOW - IL FLUSSO PER CURVATURA MEDIA FRAZIONARIA\",\"authors\":\"E. Cinti\",\"doi\":\"10.6092/ISSN.2240-2829/10576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we present some recent results in the study of the fractional mean curvature flow, that is a geometric evolution of the boundary of a set whose speed is given by the fractional mean curvature. The flow under consideration is of nonlocal type and presents several interesting difference with respect to the classical mean curvature flow. We will describe the main contributions in this field, with particular emphasis on some tipically nonlocal behaviors which are in contrast with the classical local case.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"11 1\",\"pages\":\"18-43\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/10576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了分数阶平均曲率流的一些最新研究结果,即速度由分数阶平均曲率给出的集的边界的几何演化。所考虑的流是非局部型流,与经典的平均曲率流有几个有趣的不同。我们将描述这一领域的主要贡献,特别强调与经典局部情况相反的一些典型的非局部行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE FRACTIONAL MEAN CURVATURE FLOW - IL FLUSSO PER CURVATURA MEDIA FRAZIONARIA
In this note, we present some recent results in the study of the fractional mean curvature flow, that is a geometric evolution of the boundary of a set whose speed is given by the fractional mean curvature. The flow under consideration is of nonlocal type and presents several interesting difference with respect to the classical mean curvature flow. We will describe the main contributions in this field, with particular emphasis on some tipically nonlocal behaviors which are in contrast with the classical local case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信