周期循环同调与导出的de Rham上同调

IF 0.5 Q3 MATHEMATICS
Benjamin Antieau
{"title":"周期循环同调与导出的de Rham上同调","authors":"Benjamin Antieau","doi":"10.2140/akt.2019.4.505","DOIUrl":null,"url":null,"abstract":"We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of the derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2019.4.505","citationCount":"21","resultStr":"{\"title\":\"Periodic cyclic homology and derived de Rham cohomology\",\"authors\":\"Benjamin Antieau\",\"doi\":\"10.2140/akt.2019.4.505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of the derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2019.4.505\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2019.4.505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

我们利用过滤复形上的Beilinson$t$-结构和Hochschild-Kostant-Rosenberg定理构造了方案$X$的负循环和周期循环同调的过滤,该方案具有由导出的$X$de Rham上同调的Hodge完备给出的分次片。Loday在特征零中和Bhatt Morrow Scholze在拟同组情况下为$p$-完全负循环和周期循环同源性构建了这样的过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic cyclic homology and derived de Rham cohomology
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of the derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信