{"title":"2位数字化时域信号中RFI和天文瞬变的统计判别","authors":"G. Nita, A. Keimpema, Z. Paragi","doi":"10.1142/S2251171719400087","DOIUrl":null,"url":null,"abstract":"We investigate the performance of the generalized Spectral Kurtosis (SK) estimator in detecting and discriminating natural and artificial, very short duration transients in the 2-bit sampling time domain Very-Long-Baseline Interferometry (VLBI) data. We demonstrate that, while both types of transients may be efficiently detected, their natural or artificial nature cannot be distinguished if only a time domain SK analysis is performed. However, these two types of transients become distinguishable from each other in the spectral domain, after a 32-bit FFT operation is performed on the 2-bit time domain voltages. We discuss the implication of these findings on the ability of the Spectral Kurtosis estimator to automatically detect bright astronomical transient signals of interests, such as pulsar or fast radio bursts (FRB), in VLBI data streams that have been severely contaminated by unwanted radio frequency interference.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171719400087","citationCount":"6","resultStr":"{\"title\":\"Statistical Discrimination of RFI and Astronomical Transients in 2-bit Digitized Time Domain Signals\",\"authors\":\"G. Nita, A. Keimpema, Z. Paragi\",\"doi\":\"10.1142/S2251171719400087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the performance of the generalized Spectral Kurtosis (SK) estimator in detecting and discriminating natural and artificial, very short duration transients in the 2-bit sampling time domain Very-Long-Baseline Interferometry (VLBI) data. We demonstrate that, while both types of transients may be efficiently detected, their natural or artificial nature cannot be distinguished if only a time domain SK analysis is performed. However, these two types of transients become distinguishable from each other in the spectral domain, after a 32-bit FFT operation is performed on the 2-bit time domain voltages. We discuss the implication of these findings on the ability of the Spectral Kurtosis estimator to automatically detect bright astronomical transient signals of interests, such as pulsar or fast radio bursts (FRB), in VLBI data streams that have been severely contaminated by unwanted radio frequency interference.\",\"PeriodicalId\":45132,\"journal\":{\"name\":\"Journal of Astronomical Instrumentation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2251171719400087\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251171719400087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171719400087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Statistical Discrimination of RFI and Astronomical Transients in 2-bit Digitized Time Domain Signals
We investigate the performance of the generalized Spectral Kurtosis (SK) estimator in detecting and discriminating natural and artificial, very short duration transients in the 2-bit sampling time domain Very-Long-Baseline Interferometry (VLBI) data. We demonstrate that, while both types of transients may be efficiently detected, their natural or artificial nature cannot be distinguished if only a time domain SK analysis is performed. However, these two types of transients become distinguishable from each other in the spectral domain, after a 32-bit FFT operation is performed on the 2-bit time domain voltages. We discuss the implication of these findings on the ability of the Spectral Kurtosis estimator to automatically detect bright astronomical transient signals of interests, such as pulsar or fast radio bursts (FRB), in VLBI data streams that have been severely contaminated by unwanted radio frequency interference.
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]