选择性激光熔炼添加AlSi10Mg合金的动态与准静态断裂韧性

Q4 Engineering
E. Chakotay, R. Carmi, I. Alon, R. Shneck, M. Pinkas, A. Stern, A. Bussiba
{"title":"选择性激光熔炼添加AlSi10Mg合金的动态与准静态断裂韧性","authors":"E. Chakotay, R. Carmi, I. Alon, R. Shneck, M. Pinkas, A. Stern, A. Bussiba","doi":"10.35219/awet.2018.05","DOIUrl":null,"url":null,"abstract":"In today's additive manufacturing sector, one of the most popular areas is selective laser melting (SLM) due to its capability of producing geometrically complex metal parts directly from CAD model in a few short steps. Many studies have been reported on static mechanical properties of SLM components; however, dynamic properties of SLM components of different materials have not been thoroughly investigated. Only few papers have been published on the dynamic mechanical behavior, especially in the crack resistance of selective laser melted AlSi10Mg alloy. In the present study, the effect of loading rate, dynamic versus quasi static, on the fracture toughness of the as-built alloy (X and Z orientations) has been investigated. The experimental results revealed the inherently anisotropic behavior for loading rates where the Z orientation exhibited lower toughness compared to the x orientation. The dynamic loading by impact, resulted in a significant decrease of the toughness values up to about 50% compared to the quasi-static loading. This mechanical response was attributed to the increase in the yield stress which alters the state stress at the crack tip from the planestress to some extent of the mix-mode plane stress/strain.","PeriodicalId":39009,"journal":{"name":"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Versus Quasi Static Fracture Toughness of Additively Manufactured AlSi10Mg Alloy by Selective Laser Melting Technique\",\"authors\":\"E. Chakotay, R. Carmi, I. Alon, R. Shneck, M. Pinkas, A. Stern, A. Bussiba\",\"doi\":\"10.35219/awet.2018.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's additive manufacturing sector, one of the most popular areas is selective laser melting (SLM) due to its capability of producing geometrically complex metal parts directly from CAD model in a few short steps. Many studies have been reported on static mechanical properties of SLM components; however, dynamic properties of SLM components of different materials have not been thoroughly investigated. Only few papers have been published on the dynamic mechanical behavior, especially in the crack resistance of selective laser melted AlSi10Mg alloy. In the present study, the effect of loading rate, dynamic versus quasi static, on the fracture toughness of the as-built alloy (X and Z orientations) has been investigated. The experimental results revealed the inherently anisotropic behavior for loading rates where the Z orientation exhibited lower toughness compared to the x orientation. The dynamic loading by impact, resulted in a significant decrease of the toughness values up to about 50% compared to the quasi-static loading. This mechanical response was attributed to the increase in the yield stress which alters the state stress at the crack tip from the planestress to some extent of the mix-mode plane stress/strain.\",\"PeriodicalId\":39009,\"journal\":{\"name\":\"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35219/awet.2018.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35219/awet.2018.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在当今的增材制造业中,最受欢迎的领域之一是选择性激光熔化(SLM),因为它能够在几个短步骤内直接从CAD模型中生产几何复杂的金属零件。已经报道了许多关于SLM部件静态机械性能的研究;然而,不同材料的SLM组件的动态特性尚未得到彻底的研究。关于动态力学行为,特别是选择性激光熔化AlSi10Mg合金的抗裂性,目前发表的论文很少。在本研究中,研究了加载速率(动态与准静态)对竣工合金断裂韧性(X和Z方向)的影响。实验结果揭示了加载速率的固有各向异性行为,其中Z取向表现出比x取向更低的韧性。与准静态载荷相比,冲击的动态载荷导致韧性值显著降低,高达约50%。这种机械响应归因于屈服应力的增加,屈服应力将裂纹尖端的状态应力从平面应力改变为某种程度的混合模式平面应力/应变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Versus Quasi Static Fracture Toughness of Additively Manufactured AlSi10Mg Alloy by Selective Laser Melting Technique
In today's additive manufacturing sector, one of the most popular areas is selective laser melting (SLM) due to its capability of producing geometrically complex metal parts directly from CAD model in a few short steps. Many studies have been reported on static mechanical properties of SLM components; however, dynamic properties of SLM components of different materials have not been thoroughly investigated. Only few papers have been published on the dynamic mechanical behavior, especially in the crack resistance of selective laser melted AlSi10Mg alloy. In the present study, the effect of loading rate, dynamic versus quasi static, on the fracture toughness of the as-built alloy (X and Z orientations) has been investigated. The experimental results revealed the inherently anisotropic behavior for loading rates where the Z orientation exhibited lower toughness compared to the x orientation. The dynamic loading by impact, resulted in a significant decrease of the toughness values up to about 50% compared to the quasi-static loading. This mechanical response was attributed to the increase in the yield stress which alters the state stress at the crack tip from the planestress to some extent of the mix-mode plane stress/strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
1
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信