Vilenkin和广义Haar系统的多重级数的唯一性定理

IF 0.5 Q3 MATHEMATICS
K. Navasardyan
{"title":"Vilenkin和广义Haar系统的多重级数的唯一性定理","authors":"K. Navasardyan","doi":"10.52737/18291163-2018.10.6-1-15","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the uniqueness property of a summation method for multiple series with respect to Vilenkin and generalized Haar systems. It is proved that if the multiple series with respect to these systems is a.e. summable by that method to an integrable function on $[0,1)^d$ and satisfies an extra condition, then it is the Fourier series of this function.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness Theorems for Multiple Series by Vilenkin and Generalized Haar Systems\",\"authors\":\"K. Navasardyan\",\"doi\":\"10.52737/18291163-2018.10.6-1-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the uniqueness property of a summation method for multiple series with respect to Vilenkin and generalized Haar systems. It is proved that if the multiple series with respect to these systems is a.e. summable by that method to an integrable function on $[0,1)^d$ and satisfies an extra condition, then it is the Fourier series of this function.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2018.10.6-1-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2018.10.6-1-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了关于Vilenkin和广义Haar系统的多级数求和方法的唯一性。证明了如果关于这些系统的多重级数可由该方法求和到$[0,1)^d$上的可积函数,并满足一个额外条件,则它是该函数的傅立叶级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness Theorems for Multiple Series by Vilenkin and Generalized Haar Systems
In this paper we discuss the uniqueness property of a summation method for multiple series with respect to Vilenkin and generalized Haar systems. It is proved that if the multiple series with respect to these systems is a.e. summable by that method to an integrable function on $[0,1)^d$ and satisfies an extra condition, then it is the Fourier series of this function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信