Livio Robaldo, Sotiris Batsakis, Roberta Calegari, Francesco Calimeri, Megumi Fujita, Guido Governatori, Maria Concetta Morelli, Francesco Pacenza, Giuseppe Pisano, Ken Satoh, Ilias Tachmazidis, Jessica Zangari
{"title":"对具有冲突和补偿规范的一阶知识的合规性检查:当前可用技术之间的比较","authors":"Livio Robaldo, Sotiris Batsakis, Roberta Calegari, Francesco Calimeri, Megumi Fujita, Guido Governatori, Maria Concetta Morelli, Francesco Pacenza, Giuseppe Pisano, Ken Satoh, Ilias Tachmazidis, Jessica Zangari","doi":"10.1007/s10506-023-09360-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyses and compares some of the automated reasoners that have been used in recent research for compliance checking. Although the list of the considered reasoners is not exhaustive, we believe that our analysis is representative enough to take stock of the current state of the art in the topic. We are interested here in formalizations at the <i>first-order</i> level. Past literature on normative reasoning mostly focuses on the <i>propositional</i> level. However, the propositional level is of little usefulness for concrete LegalTech applications, in which compliance checking must be enforced on (large) sets of individuals. Furthermore, we are interested in technologies that are <i>freely available</i> and that can be further investigated and compared by the scientific community. In other words, this paper does not consider technologies only employed in industry and/or whose source code is non-accessible. This paper formalizes a selected use case in the considered reasoners and compares the implementations, also in terms of simulations with respect to shared synthetic datasets. The comparison will highlight that lot of further research still needs to be done to integrate the benefits featured by the different reasoners into a single standardized first-order framework, suitable for LegalTech applications. All source codes are freely available at https://github.com/liviorobaldo/compliancecheckers, together with instructions to locally reproduce the simulations.\n</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 2","pages":"505 - 555"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-023-09360-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Compliance checking on first-order knowledge with conflicting and compensatory norms: a comparison among currently available technologies\",\"authors\":\"Livio Robaldo, Sotiris Batsakis, Roberta Calegari, Francesco Calimeri, Megumi Fujita, Guido Governatori, Maria Concetta Morelli, Francesco Pacenza, Giuseppe Pisano, Ken Satoh, Ilias Tachmazidis, Jessica Zangari\",\"doi\":\"10.1007/s10506-023-09360-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper analyses and compares some of the automated reasoners that have been used in recent research for compliance checking. Although the list of the considered reasoners is not exhaustive, we believe that our analysis is representative enough to take stock of the current state of the art in the topic. We are interested here in formalizations at the <i>first-order</i> level. Past literature on normative reasoning mostly focuses on the <i>propositional</i> level. However, the propositional level is of little usefulness for concrete LegalTech applications, in which compliance checking must be enforced on (large) sets of individuals. Furthermore, we are interested in technologies that are <i>freely available</i> and that can be further investigated and compared by the scientific community. In other words, this paper does not consider technologies only employed in industry and/or whose source code is non-accessible. This paper formalizes a selected use case in the considered reasoners and compares the implementations, also in terms of simulations with respect to shared synthetic datasets. The comparison will highlight that lot of further research still needs to be done to integrate the benefits featured by the different reasoners into a single standardized first-order framework, suitable for LegalTech applications. All source codes are freely available at https://github.com/liviorobaldo/compliancecheckers, together with instructions to locally reproduce the simulations.\\n</p></div>\",\"PeriodicalId\":51336,\"journal\":{\"name\":\"Artificial Intelligence and Law\",\"volume\":\"32 2\",\"pages\":\"505 - 555\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10506-023-09360-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Law\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10506-023-09360-z\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-023-09360-z","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Compliance checking on first-order knowledge with conflicting and compensatory norms: a comparison among currently available technologies
This paper analyses and compares some of the automated reasoners that have been used in recent research for compliance checking. Although the list of the considered reasoners is not exhaustive, we believe that our analysis is representative enough to take stock of the current state of the art in the topic. We are interested here in formalizations at the first-order level. Past literature on normative reasoning mostly focuses on the propositional level. However, the propositional level is of little usefulness for concrete LegalTech applications, in which compliance checking must be enforced on (large) sets of individuals. Furthermore, we are interested in technologies that are freely available and that can be further investigated and compared by the scientific community. In other words, this paper does not consider technologies only employed in industry and/or whose source code is non-accessible. This paper formalizes a selected use case in the considered reasoners and compares the implementations, also in terms of simulations with respect to shared synthetic datasets. The comparison will highlight that lot of further research still needs to be done to integrate the benefits featured by the different reasoners into a single standardized first-order framework, suitable for LegalTech applications. All source codes are freely available at https://github.com/liviorobaldo/compliancecheckers, together with instructions to locally reproduce the simulations.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.