{"title":"太阳能光伏系统的环境影响:对生命周期评估和其他研究的修订","authors":"María Carolina Romero Pereira, Alba Sánchez Coria","doi":"10.24050/reia.v19i38.1570","DOIUrl":null,"url":null,"abstract":"According to the 7th goal of sustainable development concluded by the United Nations (UN), energy should become clean and accessible for every human being on the planet in the upcoming decades. Clean energy is often used as a synonym for renewable, sustainable or green energy, words which are associated with a concept of low-impact technologies. However, renewable energies (REs) also have a set of negative environmental impacts (EIs), which can be identified and assessed through an EI Assessment (EIA) and/or a Life Cycle Assessment (LCA). This article focuses on the revision of EIs documented in LCA studies for solar photovoltaic (PV) systems (SPVSs), the most common type of modern REs to satisfy energy demand globally. \nAlthough different LCA studies include various environmental assessment categories, five categories were selected for analysis, namely global warming potential (GWP), land use, biodiversity loss, human health (HH) and waste generation. \nThe results show that documented EIs of SPVSs from LCAs depend not only on the technology, context and scale of the project, but also on the objective and scope of each study. Still, this article summarizes orientational values for the GWP, land use and fatal bird accidents related to SPVSs. Further, the research reveals the need for complementary approaches such as EIAs or toxicity studies for the assessment of biodiversity loss as well as the impacts on HH, and the lack of an existing waste management system for the million tons of waste soon to be disposed.","PeriodicalId":21275,"journal":{"name":"Revista EIA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studies\",\"authors\":\"María Carolina Romero Pereira, Alba Sánchez Coria\",\"doi\":\"10.24050/reia.v19i38.1570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the 7th goal of sustainable development concluded by the United Nations (UN), energy should become clean and accessible for every human being on the planet in the upcoming decades. Clean energy is often used as a synonym for renewable, sustainable or green energy, words which are associated with a concept of low-impact technologies. However, renewable energies (REs) also have a set of negative environmental impacts (EIs), which can be identified and assessed through an EI Assessment (EIA) and/or a Life Cycle Assessment (LCA). This article focuses on the revision of EIs documented in LCA studies for solar photovoltaic (PV) systems (SPVSs), the most common type of modern REs to satisfy energy demand globally. \\nAlthough different LCA studies include various environmental assessment categories, five categories were selected for analysis, namely global warming potential (GWP), land use, biodiversity loss, human health (HH) and waste generation. \\nThe results show that documented EIs of SPVSs from LCAs depend not only on the technology, context and scale of the project, but also on the objective and scope of each study. Still, this article summarizes orientational values for the GWP, land use and fatal bird accidents related to SPVSs. Further, the research reveals the need for complementary approaches such as EIAs or toxicity studies for the assessment of biodiversity loss as well as the impacts on HH, and the lack of an existing waste management system for the million tons of waste soon to be disposed.\",\"PeriodicalId\":21275,\"journal\":{\"name\":\"Revista EIA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista EIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24050/reia.v19i38.1570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista EIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24050/reia.v19i38.1570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studies
According to the 7th goal of sustainable development concluded by the United Nations (UN), energy should become clean and accessible for every human being on the planet in the upcoming decades. Clean energy is often used as a synonym for renewable, sustainable or green energy, words which are associated with a concept of low-impact technologies. However, renewable energies (REs) also have a set of negative environmental impacts (EIs), which can be identified and assessed through an EI Assessment (EIA) and/or a Life Cycle Assessment (LCA). This article focuses on the revision of EIs documented in LCA studies for solar photovoltaic (PV) systems (SPVSs), the most common type of modern REs to satisfy energy demand globally.
Although different LCA studies include various environmental assessment categories, five categories were selected for analysis, namely global warming potential (GWP), land use, biodiversity loss, human health (HH) and waste generation.
The results show that documented EIs of SPVSs from LCAs depend not only on the technology, context and scale of the project, but also on the objective and scope of each study. Still, this article summarizes orientational values for the GWP, land use and fatal bird accidents related to SPVSs. Further, the research reveals the need for complementary approaches such as EIAs or toxicity studies for the assessment of biodiversity loss as well as the impacts on HH, and the lack of an existing waste management system for the million tons of waste soon to be disposed.