{"title":"固定原点的有限群的阿贝尔曲面的光滑商","authors":"Robert Auffarth, G. Arteche, Pablo Quezada","doi":"10.4067/S0719-06462022000100037","DOIUrl":null,"url":null,"abstract":"Let $A$ be an abelian surface and let $G$ be a finite group of automorphisms of $A$ fixing the origin. Assume that the analytic representation of $G$ is irreducible. We give a classification of the pairs $(A,G)$ such that the quotient $A/G$ is smooth. In particular, we prove that $A=E^2$ with $E$ an elliptic curve and that $A/G\\simeq\\mathbb P^2$ in all cases. Moreover, for fixed $E$, there are only finitely many pairs $(E^2,G)$ up to isomorphism. This completes the classification of smooth quotients of abelian varieties by finite groups started by the first two authors.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Smooth quotients of abelian surfaces by finite groups that fix the origin\",\"authors\":\"Robert Auffarth, G. Arteche, Pablo Quezada\",\"doi\":\"10.4067/S0719-06462022000100037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be an abelian surface and let $G$ be a finite group of automorphisms of $A$ fixing the origin. Assume that the analytic representation of $G$ is irreducible. We give a classification of the pairs $(A,G)$ such that the quotient $A/G$ is smooth. In particular, we prove that $A=E^2$ with $E$ an elliptic curve and that $A/G\\\\simeq\\\\mathbb P^2$ in all cases. Moreover, for fixed $E$, there are only finitely many pairs $(E^2,G)$ up to isomorphism. This completes the classification of smooth quotients of abelian varieties by finite groups started by the first two authors.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462022000100037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462022000100037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Smooth quotients of abelian surfaces by finite groups that fix the origin
Let $A$ be an abelian surface and let $G$ be a finite group of automorphisms of $A$ fixing the origin. Assume that the analytic representation of $G$ is irreducible. We give a classification of the pairs $(A,G)$ such that the quotient $A/G$ is smooth. In particular, we prove that $A=E^2$ with $E$ an elliptic curve and that $A/G\simeq\mathbb P^2$ in all cases. Moreover, for fixed $E$, there are only finitely many pairs $(E^2,G)$ up to isomorphism. This completes the classification of smooth quotients of abelian varieties by finite groups started by the first two authors.