固定原点的有限群的阿贝尔曲面的光滑商

IF 0.6 Q3 MATHEMATICS
Robert Auffarth, G. Arteche, Pablo Quezada
{"title":"固定原点的有限群的阿贝尔曲面的光滑商","authors":"Robert Auffarth, G. Arteche, Pablo Quezada","doi":"10.4067/S0719-06462022000100037","DOIUrl":null,"url":null,"abstract":"Let $A$ be an abelian surface and let $G$ be a finite group of automorphisms of $A$ fixing the origin. Assume that the analytic representation of $G$ is irreducible. We give a classification of the pairs $(A,G)$ such that the quotient $A/G$ is smooth. In particular, we prove that $A=E^2$ with $E$ an elliptic curve and that $A/G\\simeq\\mathbb P^2$ in all cases. Moreover, for fixed $E$, there are only finitely many pairs $(E^2,G)$ up to isomorphism. This completes the classification of smooth quotients of abelian varieties by finite groups started by the first two authors.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Smooth quotients of abelian surfaces by finite groups that fix the origin\",\"authors\":\"Robert Auffarth, G. Arteche, Pablo Quezada\",\"doi\":\"10.4067/S0719-06462022000100037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be an abelian surface and let $G$ be a finite group of automorphisms of $A$ fixing the origin. Assume that the analytic representation of $G$ is irreducible. We give a classification of the pairs $(A,G)$ such that the quotient $A/G$ is smooth. In particular, we prove that $A=E^2$ with $E$ an elliptic curve and that $A/G\\\\simeq\\\\mathbb P^2$ in all cases. Moreover, for fixed $E$, there are only finitely many pairs $(E^2,G)$ up to isomorphism. This completes the classification of smooth quotients of abelian varieties by finite groups started by the first two authors.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4067/S0719-06462022000100037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/S0719-06462022000100037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

设$A$是阿贝尔曲面,设$G$是固定原点的$A$的自同构的有限群。假设$G$的解析表示是不可约的。我们给出了对$(a,G)$的分类,使得商$a/G$是光滑的。特别地,我们证明了$A=E^2$,其中$E$是一条椭圆曲线,并且在所有情况下都证明了$A/G\simeq\mathbb P^2$。此外,对于固定的$E$,到同构只有有限多对$(E^2,G)$。这就完成了由前两位作者开始的有限群对阿贝尔变种的光滑商的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth quotients of abelian surfaces by finite groups that fix the origin
Let $A$ be an abelian surface and let $G$ be a finite group of automorphisms of $A$ fixing the origin. Assume that the analytic representation of $G$ is irreducible. We give a classification of the pairs $(A,G)$ such that the quotient $A/G$ is smooth. In particular, we prove that $A=E^2$ with $E$ an elliptic curve and that $A/G\simeq\mathbb P^2$ in all cases. Moreover, for fixed $E$, there are only finitely many pairs $(E^2,G)$ up to isomorphism. This completes the classification of smooth quotients of abelian varieties by finite groups started by the first two authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信