{"title":"系统风险的级联效应建模:Freund copula的性质","authors":"S. Guzmics, G. Pflug","doi":"10.1515/demo-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract We consider a dependent lifetime model for systemic risk, whose basic idea was for the first time presented by Freund. This model allows to model cascading effects of defaults for arbitrarily many economic agents. We study in particular the pertaining bivariate copula function. This copula does not have a closed form and does not belong to the class of Archimedean copulas, either.We derive some monotonicity properties of it and show how to use this copula for modelling the cascade effect implicitly contained in observed CDS spreads.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"24 - 44"},"PeriodicalIF":0.6000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0002","citationCount":"3","resultStr":"{\"title\":\"Modelling cascading effects for systemic risk: Properties of the Freund copula\",\"authors\":\"S. Guzmics, G. Pflug\",\"doi\":\"10.1515/demo-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a dependent lifetime model for systemic risk, whose basic idea was for the first time presented by Freund. This model allows to model cascading effects of defaults for arbitrarily many economic agents. We study in particular the pertaining bivariate copula function. This copula does not have a closed form and does not belong to the class of Archimedean copulas, either.We derive some monotonicity properties of it and show how to use this copula for modelling the cascade effect implicitly contained in observed CDS spreads.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"7 1\",\"pages\":\"24 - 44\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2019-0002\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Modelling cascading effects for systemic risk: Properties of the Freund copula
Abstract We consider a dependent lifetime model for systemic risk, whose basic idea was for the first time presented by Freund. This model allows to model cascading effects of defaults for arbitrarily many economic agents. We study in particular the pertaining bivariate copula function. This copula does not have a closed form and does not belong to the class of Archimedean copulas, either.We derive some monotonicity properties of it and show how to use this copula for modelling the cascade effect implicitly contained in observed CDS spreads.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations