N积分

IF 0.3 Q4 MATHEMATICS
A. Racca, Emmanuel A. Cabral
{"title":"N积分","authors":"A. Racca, Emmanuel A. Cabral","doi":"10.22342/JIMS.26.2.865.242-257","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced a Henstock-type integral named N-integral of a real valued function f on a closed and bounded interval [a,b]. The set N-integrable functions lie entirely between Riemann integrable functions and Henstock-Kurzweil integrable functions. Furthermore, this new integral integrates all improper Riemann integrable functions even if they are not Lebesgue integrable. It was shown that for a Henstock-Kurzweil integrable function f on [a,b], the following are equivalent: The function f is N-integrable; There exists a null set S for which given epsilon >0 there exists a gauge delta such that for any delta-fine partial division D={(xi,[u,v])} of [a,b] we have [(phi_S(D) Gamma_epsilon) sum |f(v)-f(u)||v-u|<epsilon] where phi_S(D)={(xi,[u,v])in D:xi not in S} and [Gamma_epsilon={(xi,[u,v]): |f(v)-f(u)|<= epsilon}] and The function f is continuous almost everywhere. A characterization of continuous almost everywhere functions was also given.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"26 1","pages":"242-257"},"PeriodicalIF":0.3000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The N-Integral\",\"authors\":\"A. Racca, Emmanuel A. Cabral\",\"doi\":\"10.22342/JIMS.26.2.865.242-257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduced a Henstock-type integral named N-integral of a real valued function f on a closed and bounded interval [a,b]. The set N-integrable functions lie entirely between Riemann integrable functions and Henstock-Kurzweil integrable functions. Furthermore, this new integral integrates all improper Riemann integrable functions even if they are not Lebesgue integrable. It was shown that for a Henstock-Kurzweil integrable function f on [a,b], the following are equivalent: The function f is N-integrable; There exists a null set S for which given epsilon >0 there exists a gauge delta such that for any delta-fine partial division D={(xi,[u,v])} of [a,b] we have [(phi_S(D) Gamma_epsilon) sum |f(v)-f(u)||v-u|<epsilon] where phi_S(D)={(xi,[u,v])in D:xi not in S} and [Gamma_epsilon={(xi,[u,v]): |f(v)-f(u)|<= epsilon}] and The function f is continuous almost everywhere. A characterization of continuous almost everywhere functions was also given.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"242-257\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.26.2.865.242-257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.26.2.865.242-257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文引入了实值函数f在闭有界区间[a,b]上的henstock型积分n积分。集n可积函数完全介于黎曼可积函数和Henstock-Kurzweil可积函数之间。进一步地,这个新积分积分了所有反常黎曼可积函数,即使它们不是勒贝格可积函数。证明了对于Henstock-Kurzweil可积函数f on [a,b],下列是等价的:函数f是n可积的;存在一个空集S,对于给定的epsilon >,存在一个规范函数,使得对于任意的[a,b]的精细偏分D={(xi,[u,v])},我们有[(phi_S(D) Gamma_epsilon)和|f(v)-f(u)||v-u|本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
The N-Integral
In this paper, we introduced a Henstock-type integral named N-integral of a real valued function f on a closed and bounded interval [a,b]. The set N-integrable functions lie entirely between Riemann integrable functions and Henstock-Kurzweil integrable functions. Furthermore, this new integral integrates all improper Riemann integrable functions even if they are not Lebesgue integrable. It was shown that for a Henstock-Kurzweil integrable function f on [a,b], the following are equivalent: The function f is N-integrable; There exists a null set S for which given epsilon >0 there exists a gauge delta such that for any delta-fine partial division D={(xi,[u,v])} of [a,b] we have [(phi_S(D) Gamma_epsilon) sum |f(v)-f(u)||v-u|
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信