p上素数半稳定约简椭圆曲线的符号Selmer群的Akashi级数和Euler特性

Pub Date : 2020-01-25 DOI:10.5802/jtnb.1185
Antonio Lei, M. Lim
{"title":"p上素数半稳定约简椭圆曲线的符号Selmer群的Akashi级数和Euler特性","authors":"Antonio Lei, M. Lim","doi":"10.5802/jtnb.1185","DOIUrl":null,"url":null,"abstract":"Let $p$ be an odd prime number, and let $E$ be an elliptic curve defined over a number field $F'$ such that $E$ has semistable reduction at every prime of $F'$ above $p$ and is supersingular at at least one prime above $p$. Under appropriate hypotheses, we compute the Akashi series of the signed Selmer groups of $E$ over a $\\mathbb{Z}_p^d$-extension over a finite extension $F$ of $F'$. As a by-product, we also compute the Euler characteristics of these Selmer groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above p\",\"authors\":\"Antonio Lei, M. Lim\",\"doi\":\"10.5802/jtnb.1185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be an odd prime number, and let $E$ be an elliptic curve defined over a number field $F'$ such that $E$ has semistable reduction at every prime of $F'$ above $p$ and is supersingular at at least one prime above $p$. Under appropriate hypotheses, we compute the Akashi series of the signed Selmer groups of $E$ over a $\\\\mathbb{Z}_p^d$-extension over a finite extension $F$ of $F'$. As a by-product, we also compute the Euler characteristics of these Selmer groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设$p$是一个奇数素数,设$E$是一条在数域$F'$上定义的椭圆曲线,使得$E$在$p$以上的每一个素数上都有半稳定的约简,并且在$p$$以上的至少一个素数下是超奇异的。在适当的假设下,我们在$\mathbb上计算$E$的有符号Selmer群的Akashi级数{Z}_p^$F'$的有限延拓$F$上的d$-延拓。作为副产品,我们还计算了这些Selmer群的欧拉特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above p
Let $p$ be an odd prime number, and let $E$ be an elliptic curve defined over a number field $F'$ such that $E$ has semistable reduction at every prime of $F'$ above $p$ and is supersingular at at least one prime above $p$. Under appropriate hypotheses, we compute the Akashi series of the signed Selmer groups of $E$ over a $\mathbb{Z}_p^d$-extension over a finite extension $F$ of $F'$. As a by-product, we also compute the Euler characteristics of these Selmer groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信