{"title":"基于满射映射的循环码研究","authors":"M. S. Dutta, H. K. Saikia","doi":"10.11113/MATEMATIKA.V34.N2.826","DOIUrl":null,"url":null,"abstract":"In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\\frac{Z_4[u]}{}$. We have defined a bijective mapping $\\Phi_l$ on $R_{\\infty}$, where $R_{\\infty}$ is the formal power series ring over a finite field $\\mathbb{F}$. We have proved that a cyclic shift in $(\\mathbb{F})^{ln}$ corresponds to a $\\Phi_l-$cyclic shift in $(R_{\\infty})^n$ by defining a mapping from $(R_{\\infty})^n$ onto $(\\mathbb{F})^{ln}$. We have also derived some related results.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study of Cyclic Codes Via a Surjective Mapping\",\"authors\":\"M. S. Dutta, H. K. Saikia\",\"doi\":\"10.11113/MATEMATIKA.V34.N2.826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\\\\frac{Z_4[u]}{}$. We have defined a bijective mapping $\\\\Phi_l$ on $R_{\\\\infty}$, where $R_{\\\\infty}$ is the formal power series ring over a finite field $\\\\mathbb{F}$. We have proved that a cyclic shift in $(\\\\mathbb{F})^{ln}$ corresponds to a $\\\\Phi_l-$cyclic shift in $(R_{\\\\infty})^n$ by defining a mapping from $(R_{\\\\infty})^n$ onto $(\\\\mathbb{F})^{ln}$. We have also derived some related results.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V34.N2.826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N2.826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\frac{Z_4[u]}{}$. We have defined a bijective mapping $\Phi_l$ on $R_{\infty}$, where $R_{\infty}$ is the formal power series ring over a finite field $\mathbb{F}$. We have proved that a cyclic shift in $(\mathbb{F})^{ln}$ corresponds to a $\Phi_l-$cyclic shift in $(R_{\infty})^n$ by defining a mapping from $(R_{\infty})^n$ onto $(\mathbb{F})^{ln}$. We have also derived some related results.