基于满射映射的循环码研究

IF 0.3 Q4 MATHEMATICS
M. S. Dutta, H. K. Saikia
{"title":"基于满射映射的循环码研究","authors":"M. S. Dutta, H. K. Saikia","doi":"10.11113/MATEMATIKA.V34.N2.826","DOIUrl":null,"url":null,"abstract":"In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\\frac{Z_4[u]}{}$. We have defined a bijective mapping $\\Phi_l$ on $R_{\\infty}$, where $R_{\\infty}$ is the formal power series ring over a finite field $\\mathbb{F}$. We have proved that a cyclic shift in $(\\mathbb{F})^{ln}$ corresponds to a $\\Phi_l-$cyclic shift in $(R_{\\infty})^n$ by defining a mapping from $(R_{\\infty})^n$ onto $(\\mathbb{F})^{ln}$. We have also derived some related results.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study of Cyclic Codes Via a Surjective Mapping\",\"authors\":\"M. S. Dutta, H. K. Saikia\",\"doi\":\"10.11113/MATEMATIKA.V34.N2.826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\\\\frac{Z_4[u]}{}$. We have defined a bijective mapping $\\\\Phi_l$ on $R_{\\\\infty}$, where $R_{\\\\infty}$ is the formal power series ring over a finite field $\\\\mathbb{F}$. We have proved that a cyclic shift in $(\\\\mathbb{F})^{ln}$ corresponds to a $\\\\Phi_l-$cyclic shift in $(R_{\\\\infty})^n$ by defining a mapping from $(R_{\\\\infty})^n$ onto $(\\\\mathbb{F})^{ln}$. We have also derived some related results.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V34.N2.826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N2.826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了形式幂级数环上长度$n$的循环码和有限域上长度$nl$的循环编码。Dinh和Lopez-Permouth通过定义$R^n$和$(Z_4)^{2^kn}$之间的模同构,证明了$(Z_4^2^kn}$中的循环移位对应于$R^n$中$u$的恒定循环移位,其中$R=\frac{Z_4[u]}{}$。我们在$R_{\infty}$上定义了一个双射映射$\Phi_l$,其中$R_}$是有限域$\mathbb{F}$的形式幂级数环。我们通过定义从$(R_{\infty})^n$到$(\mathbb{F})^{ln}$的映射,证明了$(\math bb{F}。我们还得出了一些相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Cyclic Codes Via a Surjective Mapping
In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\frac{Z_4[u]}{}$. We have defined a bijective mapping $\Phi_l$ on $R_{\infty}$, where $R_{\infty}$ is the formal power series ring over a finite field $\mathbb{F}$. We have proved that a cyclic shift in $(\mathbb{F})^{ln}$ corresponds to a $\Phi_l-$cyclic shift in $(R_{\infty})^n$ by defining a mapping from $(R_{\infty})^n$ onto $(\mathbb{F})^{ln}$. We have also derived some related results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信