{"title":"关于椭圆算子在边界上的退化","authors":"V. E. Nazaikinskii","doi":"10.1134/S0016266322040104","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\Omega\\subset\\mathbb{R}^n\\)</span> be a bounded domain with smooth boundary <span>\\(\\partial\\Omega\\)</span>, let <span>\\(D(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be a defining function of the boundary, and let <span>\\(B(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be an <span>\\(n\\times n\\)</span> matrix function with self-adjoint positive definite values <span>\\(B(x )=B^*(x)>0\\)</span> for all <span>\\(x\\in\\overline\\Omega\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\(\\mathcal{A}_0=-\\langle\\nabla,D(x )B(x)\\nabla\\rangle\\)</span> to <span>\\(C_0^\\infty(\\Omega)\\)</span> is described. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On an Elliptic Operator Degenerating on the Boundary\",\"authors\":\"V. E. Nazaikinskii\",\"doi\":\"10.1134/S0016266322040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(\\\\Omega\\\\subset\\\\mathbb{R}^n\\\\)</span> be a bounded domain with smooth boundary <span>\\\\(\\\\partial\\\\Omega\\\\)</span>, let <span>\\\\(D(x)\\\\in C^\\\\infty(\\\\overline\\\\Omega)\\\\)</span> be a defining function of the boundary, and let <span>\\\\(B(x)\\\\in C^\\\\infty(\\\\overline\\\\Omega)\\\\)</span> be an <span>\\\\(n\\\\times n\\\\)</span> matrix function with self-adjoint positive definite values <span>\\\\(B(x )=B^*(x)>0\\\\)</span> for all <span>\\\\(x\\\\in\\\\overline\\\\Omega\\\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\\\(\\\\mathcal{A}_0=-\\\\langle\\\\nabla,D(x )B(x)\\\\nabla\\\\rangle\\\\)</span> to <span>\\\\(C_0^\\\\infty(\\\\Omega)\\\\)</span> is described. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On an Elliptic Operator Degenerating on the Boundary
Let \(\Omega\subset\mathbb{R}^n\) be a bounded domain with smooth boundary \(\partial\Omega\), let \(D(x)\in C^\infty(\overline\Omega)\) be a defining function of the boundary, and let \(B(x)\in C^\infty(\overline\Omega)\) be an \(n\times n\) matrix function with self-adjoint positive definite values \(B(x )=B^*(x)>0\) for all \(x\in\overline\Omega\) The Friedrichs extension of the minimal operator given by the differential expression \(\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle\) to \(C_0^\infty(\Omega)\) is described.