{"title":"关于椭圆算子在边界上的退化","authors":"V. E. Nazaikinskii","doi":"10.1134/S0016266322040104","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\Omega\\subset\\mathbb{R}^n\\)</span> be a bounded domain with smooth boundary <span>\\(\\partial\\Omega\\)</span>, let <span>\\(D(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be a defining function of the boundary, and let <span>\\(B(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be an <span>\\(n\\times n\\)</span> matrix function with self-adjoint positive definite values <span>\\(B(x )=B^*(x)>0\\)</span> for all <span>\\(x\\in\\overline\\Omega\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\(\\mathcal{A}_0=-\\langle\\nabla,D(x )B(x)\\nabla\\rangle\\)</span> to <span>\\(C_0^\\infty(\\Omega)\\)</span> is described. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 4","pages":"324 - 326"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On an Elliptic Operator Degenerating on the Boundary\",\"authors\":\"V. E. Nazaikinskii\",\"doi\":\"10.1134/S0016266322040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(\\\\Omega\\\\subset\\\\mathbb{R}^n\\\\)</span> be a bounded domain with smooth boundary <span>\\\\(\\\\partial\\\\Omega\\\\)</span>, let <span>\\\\(D(x)\\\\in C^\\\\infty(\\\\overline\\\\Omega)\\\\)</span> be a defining function of the boundary, and let <span>\\\\(B(x)\\\\in C^\\\\infty(\\\\overline\\\\Omega)\\\\)</span> be an <span>\\\\(n\\\\times n\\\\)</span> matrix function with self-adjoint positive definite values <span>\\\\(B(x )=B^*(x)>0\\\\)</span> for all <span>\\\\(x\\\\in\\\\overline\\\\Omega\\\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\\\(\\\\mathcal{A}_0=-\\\\langle\\\\nabla,D(x )B(x)\\\\nabla\\\\rangle\\\\)</span> to <span>\\\\(C_0^\\\\infty(\\\\Omega)\\\\)</span> is described. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"56 4\",\"pages\":\"324 - 326\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322040104\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040104","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On an Elliptic Operator Degenerating on the Boundary
Let \(\Omega\subset\mathbb{R}^n\) be a bounded domain with smooth boundary \(\partial\Omega\), let \(D(x)\in C^\infty(\overline\Omega)\) be a defining function of the boundary, and let \(B(x)\in C^\infty(\overline\Omega)\) be an \(n\times n\) matrix function with self-adjoint positive definite values \(B(x )=B^*(x)>0\) for all \(x\in\overline\Omega\) The Friedrichs extension of the minimal operator given by the differential expression \(\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle\) to \(C_0^\infty(\Omega)\) is described.
期刊介绍:
Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.