关于椭圆算子在边界上的退化

Pub Date : 2023-04-13 DOI:10.1134/S0016266322040104
V. E. Nazaikinskii
{"title":"关于椭圆算子在边界上的退化","authors":"V. E. Nazaikinskii","doi":"10.1134/S0016266322040104","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(\\Omega\\subset\\mathbb{R}^n\\)</span> be a bounded domain with smooth boundary <span>\\(\\partial\\Omega\\)</span>, let <span>\\(D(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be a defining function of the boundary, and let <span>\\(B(x)\\in C^\\infty(\\overline\\Omega)\\)</span> be an <span>\\(n\\times n\\)</span> matrix function with self-adjoint positive definite values <span>\\(B(x )=B^*(x)&gt;0\\)</span> for all <span>\\(x\\in\\overline\\Omega\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\(\\mathcal{A}_0=-\\langle\\nabla,D(x )B(x)\\nabla\\rangle\\)</span> to <span>\\(C_0^\\infty(\\Omega)\\)</span> is described. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On an Elliptic Operator Degenerating on the Boundary\",\"authors\":\"V. E. Nazaikinskii\",\"doi\":\"10.1134/S0016266322040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(\\\\Omega\\\\subset\\\\mathbb{R}^n\\\\)</span> be a bounded domain with smooth boundary <span>\\\\(\\\\partial\\\\Omega\\\\)</span>, let <span>\\\\(D(x)\\\\in C^\\\\infty(\\\\overline\\\\Omega)\\\\)</span> be a defining function of the boundary, and let <span>\\\\(B(x)\\\\in C^\\\\infty(\\\\overline\\\\Omega)\\\\)</span> be an <span>\\\\(n\\\\times n\\\\)</span> matrix function with self-adjoint positive definite values <span>\\\\(B(x )=B^*(x)&gt;0\\\\)</span> for all <span>\\\\(x\\\\in\\\\overline\\\\Omega\\\\)</span> The Friedrichs extension of the minimal operator given by the differential expression <span>\\\\(\\\\mathcal{A}_0=-\\\\langle\\\\nabla,D(x )B(x)\\\\nabla\\\\rangle\\\\)</span> to <span>\\\\(C_0^\\\\infty(\\\\Omega)\\\\)</span> is described. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

让 \(\Omega\subset\mathbb{R}^n\) 是边界光滑的有界域 \(\partial\Omega\),让 \(D(x)\in C^\infty(\overline\Omega)\) 是边界的定义函数,令 \(B(x)\in C^\infty(\overline\Omega)\) 做一个 \(n\times n\) 自伴随正定值的矩阵函数 \(B(x )=B^*(x)>0\) 对所有人 \(x\in\overline\Omega\) 微分表达式给出的最小算子的弗里德里希扩展 \(\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle\) 到 \(C_0^\infty(\Omega)\) 描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On an Elliptic Operator Degenerating on the Boundary

Let \(\Omega\subset\mathbb{R}^n\) be a bounded domain with smooth boundary \(\partial\Omega\), let \(D(x)\in C^\infty(\overline\Omega)\) be a defining function of the boundary, and let \(B(x)\in C^\infty(\overline\Omega)\) be an \(n\times n\) matrix function with self-adjoint positive definite values \(B(x )=B^*(x)>0\) for all \(x\in\overline\Omega\) The Friedrichs extension of the minimal operator given by the differential expression \(\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle\) to \(C_0^\infty(\Omega)\) is described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信