论可数子空间中函数的可拓性

Pub Date : 2023-04-13 DOI:10.1134/S0016266322040049
A. Yu. Groznova
{"title":"论可数子空间中函数的可拓性","authors":"A. Yu. Groznova","doi":"10.1134/S0016266322040049","DOIUrl":null,"url":null,"abstract":"<p> Three intermediate class of spaces <span>\\(\\mathscr{R}_1\\subset \\mathscr{R}_2\\subset \\mathscr{R}_3\\)</span> between the classes of <span>\\(F\\)</span>- and <span>\\(\\beta\\omega\\)</span>-spaces are considered. The <span>\\(\\mathscr{R}_1\\)</span>- and <span>\\(\\mathscr{R}_3\\)</span>-spaces are characterized in terms of the extension of functions. It is proved that the classes of <span>\\(\\mathscr{R}_1\\)</span>-, <span>\\(\\mathscr{R}_2\\)</span>-, <span>\\(\\mathscr{R}_3\\)</span>-, and <span>\\(\\beta\\omega\\)</span>-spaces are not preserved by the Stone–Čech compactification. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Extension of Functions from Countable Subspaces\",\"authors\":\"A. Yu. Groznova\",\"doi\":\"10.1134/S0016266322040049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Three intermediate class of spaces <span>\\\\(\\\\mathscr{R}_1\\\\subset \\\\mathscr{R}_2\\\\subset \\\\mathscr{R}_3\\\\)</span> between the classes of <span>\\\\(F\\\\)</span>- and <span>\\\\(\\\\beta\\\\omega\\\\)</span>-spaces are considered. The <span>\\\\(\\\\mathscr{R}_1\\\\)</span>- and <span>\\\\(\\\\mathscr{R}_3\\\\)</span>-spaces are characterized in terms of the extension of functions. It is proved that the classes of <span>\\\\(\\\\mathscr{R}_1\\\\)</span>-, <span>\\\\(\\\\mathscr{R}_2\\\\)</span>-, <span>\\\\(\\\\mathscr{R}_3\\\\)</span>-, and <span>\\\\(\\\\beta\\\\omega\\\\)</span>-spaces are not preserved by the Stone–Čech compactification. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322040049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在\(F\) -和\(\beta\omega\) -空间之间考虑了三个中间类空间\(\mathscr{R}_1\subset \mathscr{R}_2\subset \mathscr{R}_3\)。\(\mathscr{R}_1\) -和\(\mathscr{R}_3\) -空间的特征是函数的可拓性。证明了\(\mathscr{R}_1\) -、\(\mathscr{R}_2\) -、\(\mathscr{R}_3\) -、\(\beta\omega\) -等空间的类不被石头-Čech紧化所保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Extension of Functions from Countable Subspaces

Three intermediate class of spaces \(\mathscr{R}_1\subset \mathscr{R}_2\subset \mathscr{R}_3\) between the classes of \(F\)- and \(\beta\omega\)-spaces are considered. The \(\mathscr{R}_1\)- and \(\mathscr{R}_3\)-spaces are characterized in terms of the extension of functions. It is proved that the classes of \(\mathscr{R}_1\)-, \(\mathscr{R}_2\)-, \(\mathscr{R}_3\)-, and \(\beta\omega\)-spaces are not preserved by the Stone–Čech compactification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信