{"title":"关于布鲁默和斯塔克的猜想","authors":"S. Dasgupta, M. Kakde","doi":"10.4007/annals.2023.197.1.5","DOIUrl":null,"url":null,"abstract":"Let $H/F$ be a finite abelian extension of number fields with $F$ totally real and $H$ a CM field. Let $S$ and $T$ be disjoint finite sets of places of $F$ satisfying the standard conditions. The Brumer-Stark conjecture states that the Stickelberger element $\\Theta^{H/F}_{S, T}$ annihilates the $T$-smoothed class group $\\text{Cl}^T(H)$. We prove this conjecture away from $p=2$, that is, after tensoring with $\\mathbf{Z}[1/2]$. We prove a stronger version of this result conjectured by Kurihara that gives a formula for the 0th Fitting ideal of the minus part of the Pontryagin dual of $\\text{Cl}^T(H) \\otimes \\mathbf{Z}[1/2]$ in terms of Stickelberger elements. \nWe also show that this stronger result implies Rubin's higher rank version of the Brumer-Stark conjecture, again away from 2. \nOur technique is a generalization of Ribet's method, building upon on our earlier work on the Gross-Stark conjecture. Here we work with group ring valued Hilbert modular forms as introduced by Wiles. A key aspect of our approach is the construction of congruences between cusp forms and Eisenstein series that are stronger than usually expected, arising as shadows of the trivial zeroes of $p$-adic $L$-functions. These stronger congruences are essential to proving that the cohomology classes we construct are unramified at $p$.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Brumer--Stark conjecture\",\"authors\":\"S. Dasgupta, M. Kakde\",\"doi\":\"10.4007/annals.2023.197.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $H/F$ be a finite abelian extension of number fields with $F$ totally real and $H$ a CM field. Let $S$ and $T$ be disjoint finite sets of places of $F$ satisfying the standard conditions. The Brumer-Stark conjecture states that the Stickelberger element $\\\\Theta^{H/F}_{S, T}$ annihilates the $T$-smoothed class group $\\\\text{Cl}^T(H)$. We prove this conjecture away from $p=2$, that is, after tensoring with $\\\\mathbf{Z}[1/2]$. We prove a stronger version of this result conjectured by Kurihara that gives a formula for the 0th Fitting ideal of the minus part of the Pontryagin dual of $\\\\text{Cl}^T(H) \\\\otimes \\\\mathbf{Z}[1/2]$ in terms of Stickelberger elements. \\nWe also show that this stronger result implies Rubin's higher rank version of the Brumer-Stark conjecture, again away from 2. \\nOur technique is a generalization of Ribet's method, building upon on our earlier work on the Gross-Stark conjecture. Here we work with group ring valued Hilbert modular forms as introduced by Wiles. A key aspect of our approach is the construction of congruences between cusp forms and Eisenstein series that are stronger than usually expected, arising as shadows of the trivial zeroes of $p$-adic $L$-functions. These stronger congruences are essential to proving that the cohomology classes we construct are unramified at $p$.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.197.1.5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.1.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $H/F$ be a finite abelian extension of number fields with $F$ totally real and $H$ a CM field. Let $S$ and $T$ be disjoint finite sets of places of $F$ satisfying the standard conditions. The Brumer-Stark conjecture states that the Stickelberger element $\Theta^{H/F}_{S, T}$ annihilates the $T$-smoothed class group $\text{Cl}^T(H)$. We prove this conjecture away from $p=2$, that is, after tensoring with $\mathbf{Z}[1/2]$. We prove a stronger version of this result conjectured by Kurihara that gives a formula for the 0th Fitting ideal of the minus part of the Pontryagin dual of $\text{Cl}^T(H) \otimes \mathbf{Z}[1/2]$ in terms of Stickelberger elements.
We also show that this stronger result implies Rubin's higher rank version of the Brumer-Stark conjecture, again away from 2.
Our technique is a generalization of Ribet's method, building upon on our earlier work on the Gross-Stark conjecture. Here we work with group ring valued Hilbert modular forms as introduced by Wiles. A key aspect of our approach is the construction of congruences between cusp forms and Eisenstein series that are stronger than usually expected, arising as shadows of the trivial zeroes of $p$-adic $L$-functions. These stronger congruences are essential to proving that the cohomology classes we construct are unramified at $p$.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.