风作用下无人机飞行轨迹偏离概率分析

Q2 Social Sciences
P. Banerjee, Matteo Corbetta, K. Jarvis, Kyle M. Smalling, A. Turner
{"title":"风作用下无人机飞行轨迹偏离概率分析","authors":"P. Banerjee, Matteo Corbetta, K. Jarvis, Kyle M. Smalling, A. Turner","doi":"10.2514/1.d0337","DOIUrl":null,"url":null,"abstract":"Incorporating unmanned aerial vehicles (UAVs) into the United States National Airspace System would demand enhanced airspace safety technologies for the safety of the UAVs, people, and property on the ground. One of the safety-critical factors to consider is the risk of a UAV deviating from its planned trajectory, which may result in loss of separation between other vehicles or obstacles or may cause early depletion of battery power. In this paper, we studied the effect of wind on UAV trajectory deviation by incorporating wind velocity as a drag component in a six-degrees-of-freedom trajectory simulation comprising a rotorcraft lumped-mass model. Both steady-state wind and wind turbulence effects were investigated. We validated our approach using real flight data from UAV experiments conducted at NASA Langley Research Center. The proposed approach would enable risk-informed decision making by timely mitigation of current and future collision events in an uncertain and dynamic environment.","PeriodicalId":36984,"journal":{"name":"Journal of Air Transportation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability of Trajectory Deviation of Unmanned Aerial Vehicle in Presence of Wind\",\"authors\":\"P. Banerjee, Matteo Corbetta, K. Jarvis, Kyle M. Smalling, A. Turner\",\"doi\":\"10.2514/1.d0337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating unmanned aerial vehicles (UAVs) into the United States National Airspace System would demand enhanced airspace safety technologies for the safety of the UAVs, people, and property on the ground. One of the safety-critical factors to consider is the risk of a UAV deviating from its planned trajectory, which may result in loss of separation between other vehicles or obstacles or may cause early depletion of battery power. In this paper, we studied the effect of wind on UAV trajectory deviation by incorporating wind velocity as a drag component in a six-degrees-of-freedom trajectory simulation comprising a rotorcraft lumped-mass model. Both steady-state wind and wind turbulence effects were investigated. We validated our approach using real flight data from UAV experiments conducted at NASA Langley Research Center. The proposed approach would enable risk-informed decision making by timely mitigation of current and future collision events in an uncertain and dynamic environment.\",\"PeriodicalId\":36984,\"journal\":{\"name\":\"Journal of Air Transportation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Air Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.d0337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.d0337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

将无人机(uav)纳入美国国家空域系统将需要增强空域安全技术,以保障无人机、地面人员和财产的安全。要考虑的安全关键因素之一是无人机偏离其计划轨迹的风险,这可能导致与其他车辆或障碍物之间失去分离,或者可能导致电池电量的早期耗尽。在旋翼机集中质量模型的六自由度轨迹仿真中,通过将风速作为阻力分量,研究了风对无人机轨迹偏差的影响。研究了稳态风和风湍流的影响。我们使用NASA兰利研究中心无人机实验的真实飞行数据验证了我们的方法。拟议的方法将通过在不确定和动态的环境中及时减轻当前和未来的碰撞事件,使人们能够在了解风险的情况下做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability of Trajectory Deviation of Unmanned Aerial Vehicle in Presence of Wind
Incorporating unmanned aerial vehicles (UAVs) into the United States National Airspace System would demand enhanced airspace safety technologies for the safety of the UAVs, people, and property on the ground. One of the safety-critical factors to consider is the risk of a UAV deviating from its planned trajectory, which may result in loss of separation between other vehicles or obstacles or may cause early depletion of battery power. In this paper, we studied the effect of wind on UAV trajectory deviation by incorporating wind velocity as a drag component in a six-degrees-of-freedom trajectory simulation comprising a rotorcraft lumped-mass model. Both steady-state wind and wind turbulence effects were investigated. We validated our approach using real flight data from UAV experiments conducted at NASA Langley Research Center. The proposed approach would enable risk-informed decision making by timely mitigation of current and future collision events in an uncertain and dynamic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Air Transportation
Journal of Air Transportation Social Sciences-Safety Research
CiteScore
2.80
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信