瞬态重复发散模型中的期望度分布

Pub Date : 2021-05-29 DOI:10.30757/alea.v19-04
A. Barbour, Tiffany Y. Y. Lo
{"title":"瞬态重复发散模型中的期望度分布","authors":"A. Barbour, Tiffany Y. Y. Lo","doi":"10.30757/alea.v19-04","DOIUrl":null,"url":null,"abstract":"We study the degree distribution of a randomly chosen vertex in a duplication–divergence graph, under a variety of different generalizations of the basic model of Bhan et al. (2002) and Vázquez et al. (2003). We pay particular attention to what happens when a non-trivial proportion of the vertices have large degrees, establishing a central limit theorem for the logarithm of the degree distribution. Our approach, as in Jordan (2018) and Hermann and Pfaffelhuber (2021), relies heavily on the analysis of related birth–catastrophe processes, and couplings are used to show that a number of different formulations of the process have asymptotically similar expected degree distributions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The expected degree distribution in transient duplication divergence models\",\"authors\":\"A. Barbour, Tiffany Y. Y. Lo\",\"doi\":\"10.30757/alea.v19-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the degree distribution of a randomly chosen vertex in a duplication–divergence graph, under a variety of different generalizations of the basic model of Bhan et al. (2002) and Vázquez et al. (2003). We pay particular attention to what happens when a non-trivial proportion of the vertices have large degrees, establishing a central limit theorem for the logarithm of the degree distribution. Our approach, as in Jordan (2018) and Hermann and Pfaffelhuber (2021), relies heavily on the analysis of related birth–catastrophe processes, and couplings are used to show that a number of different formulations of the process have asymptotically similar expected degree distributions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v19-04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Bhan et al.(2002)和Vázquez et al.(2003)的基本模型的各种不同推广下,我们研究了重复发散图中随机选择顶点的度分布。我们特别关注当一个非平凡比例的顶点具有较大的度时会发生什么,为度分布的对数建立了一个中心极限定理。我们的方法,如Jordan(2018)和Hermann和Pfaffelhuber(2021),在很大程度上依赖于对相关的出生-灾难过程的分析,并使用耦合来表明该过程的许多不同公式具有渐近相似的预期度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The expected degree distribution in transient duplication divergence models
We study the degree distribution of a randomly chosen vertex in a duplication–divergence graph, under a variety of different generalizations of the basic model of Bhan et al. (2002) and Vázquez et al. (2003). We pay particular attention to what happens when a non-trivial proportion of the vertices have large degrees, establishing a central limit theorem for the logarithm of the degree distribution. Our approach, as in Jordan (2018) and Hermann and Pfaffelhuber (2021), relies heavily on the analysis of related birth–catastrophe processes, and couplings are used to show that a number of different formulations of the process have asymptotically similar expected degree distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信