Sierpiński图一致细分的一些拓扑性质

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Jia-bao Liu, H. M. A. Siddiqui, M. Nadeem, M. Binyamin
{"title":"Sierpiński图一致细分的一些拓扑性质","authors":"Jia-bao Liu, H. M. A. Siddiqui, M. Nadeem, M. Binyamin","doi":"10.1515/mgmc-2021-0006","DOIUrl":null,"url":null,"abstract":"Abstract Sierpiński graphs are family of fractal nature graphs having applications in mathematics of Tower of Hanoi, topology, computer science, and many more diverse areas of science and technology. This family of graphs can be generated by taking certain number of copies of the same basic graph. A topological index is the number which shows some basic properties of the chemical structures. This article deals with degree based topological indices of uniform subdivision of the generalized Sierpiński graphs S(n,G) and Sierpiński gasket Sn. The closed formulae for the computation of different kinds of Zagreb indices, multiple Zagreb indices, reduced Zagreb indices, augmented Zagreb indices, Narumi-Katayama index, forgotten index, and Zagreb polynomials have been presented for the family of graphs.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"44 1","pages":"218 - 227"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2021-0006","citationCount":"5","resultStr":"{\"title\":\"Some topological properties of uniform subdivision of Sierpiński graphs\",\"authors\":\"Jia-bao Liu, H. M. A. Siddiqui, M. Nadeem, M. Binyamin\",\"doi\":\"10.1515/mgmc-2021-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sierpiński graphs are family of fractal nature graphs having applications in mathematics of Tower of Hanoi, topology, computer science, and many more diverse areas of science and technology. This family of graphs can be generated by taking certain number of copies of the same basic graph. A topological index is the number which shows some basic properties of the chemical structures. This article deals with degree based topological indices of uniform subdivision of the generalized Sierpiński graphs S(n,G) and Sierpiński gasket Sn. The closed formulae for the computation of different kinds of Zagreb indices, multiple Zagreb indices, reduced Zagreb indices, augmented Zagreb indices, Narumi-Katayama index, forgotten index, and Zagreb polynomials have been presented for the family of graphs.\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"44 1\",\"pages\":\"218 - 227\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mgmc-2021-0006\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2021-0006\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2021-0006","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 5

摘要

Sierpiński图是分形性质图的家族,在河内塔的数学、拓扑学、计算机科学和许多不同的科学和技术领域都有应用。这类图可以通过对相同的基本图进行一定数量的复制来生成。拓扑指数是表示化学结构的一些基本性质的数字。本文研究了广义Sierpiński图S(n,G)和Sierpiński垫片Sn的一致细分的基于度的拓扑指标。对图族给出了计算不同类型的萨格勒布指数、多重萨格勒布指数、约化萨格勒布指数、增广萨格勒布指数、Narumi-Katayama指数、遗忘指数和萨格勒布多项式的封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some topological properties of uniform subdivision of Sierpiński graphs
Abstract Sierpiński graphs are family of fractal nature graphs having applications in mathematics of Tower of Hanoi, topology, computer science, and many more diverse areas of science and technology. This family of graphs can be generated by taking certain number of copies of the same basic graph. A topological index is the number which shows some basic properties of the chemical structures. This article deals with degree based topological indices of uniform subdivision of the generalized Sierpiński graphs S(n,G) and Sierpiński gasket Sn. The closed formulae for the computation of different kinds of Zagreb indices, multiple Zagreb indices, reduced Zagreb indices, augmented Zagreb indices, Narumi-Katayama index, forgotten index, and Zagreb polynomials have been presented for the family of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信