{"title":"岩浆黑云母的高分辨率LA-ICP-MS微量元素填图:研究岩浆前后演化的新方法","authors":"Z. Azadbakht, D. Lentz","doi":"10.3749/canmin.1900101","DOIUrl":null,"url":null,"abstract":"\n Biotite grains from 22 felsic intrusions in New Brunswick were mapped in situ using a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). We investigated the extent to which biotite can retain its magmatic zoning patterns and, where zoning does exist, how it can be used to elucidate early to late stage, syn-magmatic to post-crystallization processes. Although the major element and halogen contents of the examined biotite phenocrysts are homogeneous, two-thirds of the grains display trace-element zoning for Ba, Rb, and Cs. The results also indicated that zoning is better retained in larger grains (i.e., > 500 × 500 μm) with minimal alteration and mineral inclusions.\n An exceptionally well-zoned Li-rich siderophyllite from the Pleasant Ridge topaz granite in southwestern New Brunswick shows Ti, Ta, Sn, W, Cs, Rb, and V (without Li or Ba) zoning. Cesium values increase from 200 to 1400 ppm from core to rim. Conversely, Sn and W values decrease toward the rim (50 to 10 and 100 to 10 ppm, respectively). Tantalum and Ti values show fewer variations but drop abruptly close to the rim of the grain (100 to 20 and 2000 to 500 ppm, respectively). These observations may indicate crystallization of mineral phases with high partition coefficients for these highly incompatible elements (except Ti) (e.g., cassiterite and rutile) followed by fractionation of a fluid phase at a later stage of magma crystallization. The preservation of zoning may indicate rapid cooling post-crystallization of the parent magma.","PeriodicalId":9455,"journal":{"name":"Canadian Mineralogist","volume":"58 1","pages":"293-311"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3749/canmin.1900101","citationCount":"9","resultStr":"{\"title\":\"High-resolution LA-ICP-MS trace-element mapping of magmatic biotite: A new approach for studying syn- to post-magmatic evolution\",\"authors\":\"Z. Azadbakht, D. Lentz\",\"doi\":\"10.3749/canmin.1900101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Biotite grains from 22 felsic intrusions in New Brunswick were mapped in situ using a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). We investigated the extent to which biotite can retain its magmatic zoning patterns and, where zoning does exist, how it can be used to elucidate early to late stage, syn-magmatic to post-crystallization processes. Although the major element and halogen contents of the examined biotite phenocrysts are homogeneous, two-thirds of the grains display trace-element zoning for Ba, Rb, and Cs. The results also indicated that zoning is better retained in larger grains (i.e., > 500 × 500 μm) with minimal alteration and mineral inclusions.\\n An exceptionally well-zoned Li-rich siderophyllite from the Pleasant Ridge topaz granite in southwestern New Brunswick shows Ti, Ta, Sn, W, Cs, Rb, and V (without Li or Ba) zoning. Cesium values increase from 200 to 1400 ppm from core to rim. Conversely, Sn and W values decrease toward the rim (50 to 10 and 100 to 10 ppm, respectively). Tantalum and Ti values show fewer variations but drop abruptly close to the rim of the grain (100 to 20 and 2000 to 500 ppm, respectively). These observations may indicate crystallization of mineral phases with high partition coefficients for these highly incompatible elements (except Ti) (e.g., cassiterite and rutile) followed by fractionation of a fluid phase at a later stage of magma crystallization. The preservation of zoning may indicate rapid cooling post-crystallization of the parent magma.\",\"PeriodicalId\":9455,\"journal\":{\"name\":\"Canadian Mineralogist\",\"volume\":\"58 1\",\"pages\":\"293-311\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3749/canmin.1900101\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mineralogist\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.1900101\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3749/canmin.1900101","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINERALOGY","Score":null,"Total":0}
High-resolution LA-ICP-MS trace-element mapping of magmatic biotite: A new approach for studying syn- to post-magmatic evolution
Biotite grains from 22 felsic intrusions in New Brunswick were mapped in situ using a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). We investigated the extent to which biotite can retain its magmatic zoning patterns and, where zoning does exist, how it can be used to elucidate early to late stage, syn-magmatic to post-crystallization processes. Although the major element and halogen contents of the examined biotite phenocrysts are homogeneous, two-thirds of the grains display trace-element zoning for Ba, Rb, and Cs. The results also indicated that zoning is better retained in larger grains (i.e., > 500 × 500 μm) with minimal alteration and mineral inclusions.
An exceptionally well-zoned Li-rich siderophyllite from the Pleasant Ridge topaz granite in southwestern New Brunswick shows Ti, Ta, Sn, W, Cs, Rb, and V (without Li or Ba) zoning. Cesium values increase from 200 to 1400 ppm from core to rim. Conversely, Sn and W values decrease toward the rim (50 to 10 and 100 to 10 ppm, respectively). Tantalum and Ti values show fewer variations but drop abruptly close to the rim of the grain (100 to 20 and 2000 to 500 ppm, respectively). These observations may indicate crystallization of mineral phases with high partition coefficients for these highly incompatible elements (except Ti) (e.g., cassiterite and rutile) followed by fractionation of a fluid phase at a later stage of magma crystallization. The preservation of zoning may indicate rapid cooling post-crystallization of the parent magma.
期刊介绍:
Since 1962, The Canadian Mineralogist has published papers dealing with all aspects of mineralogy, crystallography, petrology, economic geology, geochemistry, and applied mineralogy.