利用谷歌地球引擎工具在像元水平上进行长期热异常探测和制图

Q2 Social Sciences
S. Mamgain, Kshama Gupta, Harish Arijit Roy, Chandra Karnatak, Raghavendra Pratap Singh
{"title":"利用谷歌地球引擎工具在像元水平上进行长期热异常探测和制图","authors":"S. Mamgain, Kshama Gupta, Harish Arijit Roy, Chandra Karnatak, Raghavendra Pratap Singh","doi":"10.5194/isprs-archives-xlviii-m-3-2023-147-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Frequency of extreme weather events such as cloudbursts, heatwaves etc. have increased as an outcome of changing climate. Identification of the pattern of extreme temperature events is important since it governs various events such as heatwaves, wildfires, droughts, storms, coldwaves etc. Moderate Resolution Imaging Spectroradiometer (MODIS) provides Land Surface Temperature (LST) data at 1 kilometre of spatial resolution at daily interval that can help in the identification and mapping of the anomalies in the temperature at pixel level. This study proposes a global-scale daily long-term thermal anomaly detection tool made using Google Earth Engine (GEE) App. This open source tool with the name of ‘Deviation from Mean’ uses the MODIS LST data available from 2000 till date to detect temperature anomaly based on the deviation of temperature of any day (chosen by the user) from the long-term climatological mean. It also generates a time-series plot of temperature values of any pixel for any date for last 24 years i.e. 2000–2023 in the graphical form to analyze the variation in the temperature over the time. A case study has also been done using the tool to highlight the thermal anomaly experienced over the Indian sub-continent during March-April, 2022 and 2023. This tool is capable of providing thermal anomaly information at global, regional as well as local level that can help in taking region-specific mitigation measures.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LONG-TERM THERMAL ANOMALY DETECTION AND MAPPING AT PIXEL LEVEL USING A GOOGLE EARTH ENGINE TOOL\",\"authors\":\"S. Mamgain, Kshama Gupta, Harish Arijit Roy, Chandra Karnatak, Raghavendra Pratap Singh\",\"doi\":\"10.5194/isprs-archives-xlviii-m-3-2023-147-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Frequency of extreme weather events such as cloudbursts, heatwaves etc. have increased as an outcome of changing climate. Identification of the pattern of extreme temperature events is important since it governs various events such as heatwaves, wildfires, droughts, storms, coldwaves etc. Moderate Resolution Imaging Spectroradiometer (MODIS) provides Land Surface Temperature (LST) data at 1 kilometre of spatial resolution at daily interval that can help in the identification and mapping of the anomalies in the temperature at pixel level. This study proposes a global-scale daily long-term thermal anomaly detection tool made using Google Earth Engine (GEE) App. This open source tool with the name of ‘Deviation from Mean’ uses the MODIS LST data available from 2000 till date to detect temperature anomaly based on the deviation of temperature of any day (chosen by the user) from the long-term climatological mean. It also generates a time-series plot of temperature values of any pixel for any date for last 24 years i.e. 2000–2023 in the graphical form to analyze the variation in the temperature over the time. A case study has also been done using the tool to highlight the thermal anomaly experienced over the Indian sub-continent during March-April, 2022 and 2023. This tool is capable of providing thermal anomaly information at global, regional as well as local level that can help in taking region-specific mitigation measures.\\n\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-147-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-147-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要由于气候变化,诸如暴雨、热浪等极端天气事件的频率有所增加。识别极端温度事件的模式很重要,因为它控制着各种事件,如热浪、野火、干旱、风暴、寒潮等。中分辨率成像光谱辐射计(MODIS)提供每日1公里空间分辨率的地表温度(LST)数据,有助于在像元水平上识别和绘制温度异常。本研究提出了一个使用谷歌Earth Engine (GEE) App制作的全球尺度日长期热异常检测工具。这个名为“Deviation from Mean”的开源工具使用2000年至今的MODIS LST数据,根据任意一天(用户选择)的温度与长期气候平均值的偏差来检测温度异常。它亦会以图形形式生成过去24年(即2000-2023年)任何日期任何像元的温度值的时间序列图,以分析温度随时间的变化。利用该工具还进行了一个案例研究,以突出2022年3月至4月、2023年印度次大陆经历的热异常。该工具能够提供全球、区域和地方各级的热异常信息,有助于采取针对特定区域的缓解措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LONG-TERM THERMAL ANOMALY DETECTION AND MAPPING AT PIXEL LEVEL USING A GOOGLE EARTH ENGINE TOOL
Abstract. Frequency of extreme weather events such as cloudbursts, heatwaves etc. have increased as an outcome of changing climate. Identification of the pattern of extreme temperature events is important since it governs various events such as heatwaves, wildfires, droughts, storms, coldwaves etc. Moderate Resolution Imaging Spectroradiometer (MODIS) provides Land Surface Temperature (LST) data at 1 kilometre of spatial resolution at daily interval that can help in the identification and mapping of the anomalies in the temperature at pixel level. This study proposes a global-scale daily long-term thermal anomaly detection tool made using Google Earth Engine (GEE) App. This open source tool with the name of ‘Deviation from Mean’ uses the MODIS LST data available from 2000 till date to detect temperature anomaly based on the deviation of temperature of any day (chosen by the user) from the long-term climatological mean. It also generates a time-series plot of temperature values of any pixel for any date for last 24 years i.e. 2000–2023 in the graphical form to analyze the variation in the temperature over the time. A case study has also been done using the tool to highlight the thermal anomaly experienced over the Indian sub-continent during March-April, 2022 and 2023. This tool is capable of providing thermal anomaly information at global, regional as well as local level that can help in taking region-specific mitigation measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信