{"title":"Hardy空间上的双层势算子","authors":"Y. Komori-Furuya","doi":"10.1007/s10476-023-0202-x","DOIUrl":null,"url":null,"abstract":"<div><p>Many studies have been done for one-dimensional Cauchy integral operator. We consider <i>n</i>-dimensional Cauchy integral operator for hypersurface, or we say, the double layer potential operator, and obtain the boundedness from <i>H</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) to <i>h</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) (local Hardy space). For the proof we introduce Clifford valued Hardy spaces.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 1","pages":"167 - 182"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Double Layer Potential Operator on Hardy Spaces\",\"authors\":\"Y. Komori-Furuya\",\"doi\":\"10.1007/s10476-023-0202-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many studies have been done for one-dimensional Cauchy integral operator. We consider <i>n</i>-dimensional Cauchy integral operator for hypersurface, or we say, the double layer potential operator, and obtain the boundedness from <i>H</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) to <i>h</i><sup><i>p</i></sup>(<i>R</i><sup><i>n</i></sup>) (local Hardy space). For the proof we introduce Clifford valued Hardy spaces.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"49 1\",\"pages\":\"167 - 182\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0202-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0202-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Double Layer Potential Operator on Hardy Spaces
Many studies have been done for one-dimensional Cauchy integral operator. We consider n-dimensional Cauchy integral operator for hypersurface, or we say, the double layer potential operator, and obtain the boundedness from Hp(Rn) to hp(Rn) (local Hardy space). For the proof we introduce Clifford valued Hardy spaces.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.