关于奇异实解析列维平叶

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Fern'andez-P'erez, Rogério Mol, R. Rosas
{"title":"关于奇异实解析列维平叶","authors":"A. Fern'andez-P'erez, Rogério Mol, R. Rosas","doi":"10.4310/ajm.2020.v24.n6.a4","DOIUrl":null,"url":null,"abstract":"A singular real analytic foliation $\\mathcal{F}$ of real codimension one on an $n$-dimensional complex manifold $M$ is Levi-flat if each of its leaves is foliated by immersed complex manifolds of dimension $n-1$. These complex manifolds are leaves of a singular real analytic foliation $\\mathcal{L}$ which is tangent to $\\mathcal{F}$. In this article, we classify germs of Levi-flat foliations at $(\\mathbb{C}^{n},0)$ under the hypothesis that $\\mathcal{L}$ is a germ holomorphic foliation. Essentially, we prove that there are two possibilities for $\\mathcal{L}$, from which the classification of $\\mathcal{F}$ derives: either it has a meromorphic first integral or is defined by a closed rational $1-$form. Our local results also allow us to classify real algebraic Levi-flat foliations on the complex projective space $\\mathbb{P}^{n} = \\mathbb{P}^{n}_{\\mathbb{C}}$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On singular real analytic Levi-flat foliations\",\"authors\":\"A. Fern'andez-P'erez, Rogério Mol, R. Rosas\",\"doi\":\"10.4310/ajm.2020.v24.n6.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A singular real analytic foliation $\\\\mathcal{F}$ of real codimension one on an $n$-dimensional complex manifold $M$ is Levi-flat if each of its leaves is foliated by immersed complex manifolds of dimension $n-1$. These complex manifolds are leaves of a singular real analytic foliation $\\\\mathcal{L}$ which is tangent to $\\\\mathcal{F}$. In this article, we classify germs of Levi-flat foliations at $(\\\\mathbb{C}^{n},0)$ under the hypothesis that $\\\\mathcal{L}$ is a germ holomorphic foliation. Essentially, we prove that there are two possibilities for $\\\\mathcal{L}$, from which the classification of $\\\\mathcal{F}$ derives: either it has a meromorphic first integral or is defined by a closed rational $1-$form. Our local results also allow us to classify real algebraic Levi-flat foliations on the complex projective space $\\\\mathbb{P}^{n} = \\\\mathbb{P}^{n}_{\\\\mathbb{C}}$.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2020.v24.n6.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2020.v24.n6.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在n维复流形M$上,一个实余维为1的奇异实解析叶形$\mathcal{F}$是列维平坦的,如果它的每一个叶都被n-1维的浸没复流形$叶化。这些复流形是奇异实解析叶形$\mathcal{L}$的叶,它与$\mathcal{F}$相切。本文在$\mathcal{L}$是胚芽全纯叶的假设下,对$(\mathbb{C}^{n},0)$上的列维平叶的胚芽进行了分类。本质上,我们证明了$\mathcal{L}$有两种可能,由此衍生出$\mathcal{F}$的分类:$\mathcal{L}$具有亚纯第一积分或由闭有理$1-$形式定义。我们的局部结果也允许我们在复投影空间$\mathbb{P}^{n} = \mathbb{P}^{n}_{\mathbb{C}}$上对实代数列维平面叶进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On singular real analytic Levi-flat foliations
A singular real analytic foliation $\mathcal{F}$ of real codimension one on an $n$-dimensional complex manifold $M$ is Levi-flat if each of its leaves is foliated by immersed complex manifolds of dimension $n-1$. These complex manifolds are leaves of a singular real analytic foliation $\mathcal{L}$ which is tangent to $\mathcal{F}$. In this article, we classify germs of Levi-flat foliations at $(\mathbb{C}^{n},0)$ under the hypothesis that $\mathcal{L}$ is a germ holomorphic foliation. Essentially, we prove that there are two possibilities for $\mathcal{L}$, from which the classification of $\mathcal{F}$ derives: either it has a meromorphic first integral or is defined by a closed rational $1-$form. Our local results also allow us to classify real algebraic Levi-flat foliations on the complex projective space $\mathbb{P}^{n} = \mathbb{P}^{n}_{\mathbb{C}}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信