Deeplai Khurana, R. Garg, Sarika Verma, G. Murugusundaramoorthy
{"title":"一类广义的与乘子变换相关的单价调和函数","authors":"Deeplai Khurana, R. Garg, Sarika Verma, G. Murugusundaramoorthy","doi":"10.22130/SCMA.2021.132155.841","DOIUrl":null,"url":null,"abstract":"We define a new subclass of univalent harmonic mappings using multiplier transformation and investigate various properties like necessary and sufficient conditions, extreme points, starlikeness, radius of convexity. We prove that the class is closed under harmonic convolutions and convex combinations. Finally, we show that this class is invariant under Bernandi-Libera-Livingston integral for harmonic functions.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Class of Univalent Harmonic Functions Associated with a Multiplier Transformation\",\"authors\":\"Deeplai Khurana, R. Garg, Sarika Verma, G. Murugusundaramoorthy\",\"doi\":\"10.22130/SCMA.2021.132155.841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a new subclass of univalent harmonic mappings using multiplier transformation and investigate various properties like necessary and sufficient conditions, extreme points, starlikeness, radius of convexity. We prove that the class is closed under harmonic convolutions and convex combinations. Finally, we show that this class is invariant under Bernandi-Libera-Livingston integral for harmonic functions.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2021.132155.841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2021.132155.841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
利用乘子变换定义了一价调和映射的一个新子类,研究了它的充要条件、极值点、星形、凸半径等性质。证明了该类在调和卷积和凸组合下是闭的。最后,我们证明了该类在调和函数的berndii - libera - livingston积分下是不变的。
A Generalized Class of Univalent Harmonic Functions Associated with a Multiplier Transformation
We define a new subclass of univalent harmonic mappings using multiplier transformation and investigate various properties like necessary and sufficient conditions, extreme points, starlikeness, radius of convexity. We prove that the class is closed under harmonic convolutions and convex combinations. Finally, we show that this class is invariant under Bernandi-Libera-Livingston integral for harmonic functions.