Pierre-Louis Curien, Jovana Obradović, Jelena Ivanović
{"title":"超图多面体的句法方面","authors":"Pierre-Louis Curien, Jovana Obradović, Jelena Ivanović","doi":"10.1007/s40062-018-0211-9","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petri? to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petri?’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 1","pages":"235 - 279"},"PeriodicalIF":0.5000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0211-9","citationCount":"13","resultStr":"{\"title\":\"Syntactic aspects of hypergraph polytopes\",\"authors\":\"Pierre-Louis Curien, Jovana Obradović, Jelena Ivanović\",\"doi\":\"10.1007/s40062-018-0211-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petri? to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petri?’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"14 1\",\"pages\":\"235 - 279\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0211-9\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0211-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0211-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper introduces an inductive tree notation for all the faces of polytopes arising from a simplex by truncations, which allows viewing face inclusion as the process of contracting tree edges. These polytopes, known as hypergraph polytopes or nestohedra, fit in the interval from simplices to permutohedra (in any finite dimension). This interval was further stretched by Petri? to allow truncations of faces that are themselves obtained by truncations. Our notation applies to all these polytopes. As an illustration, we detail the case of Petri?’s permutohedron-based associahedra. As an application, we present a criterion for determining whether edges of polytopes associated with the coherences of categorified operads correspond to sequential, or to parallel associativity.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.