{"title":"乔丹在高等希尔伯特空间的教堂:纠缠和热涨落","authors":"V. Vedral","doi":"10.12743/quanta.v11i1.180","DOIUrl":null,"url":null,"abstract":"I revisit Jordan's derivation of Einstein's formula for energy fluctuations in the black body in thermal equilibrium. This formula is usually taken to represent the unification of the wave and the particle aspects of the electromagnetic field since the fluctuations can be shown to be the sum of wave-like and particle-like contributions. However, in Jordan's treatment there is no mention of the Planck distribution and all averages are performed with respect to pure number states of radiation (mixed states had not yet been discovered!). The chief reason why Jordan does reproduce Einstein's result despite not using thermal states of radiation is that he focuses on fluctuations in a small (compared to the whole) volume of the black body. The state of radiation in a small volume is highly entangled to the rest of the black body which leads to the correct fluctuations even though the overall state might, in fact, be assumed to be pure (i.e. at zero temperature). I present a simple derivation of the fluctuations formula as an instance of mixed states being reductions of higher level pure states, a representation that is affectionately known as \"Church of the Higher Hilbert Space\". According to this view of mixed states, temperature is nothing but the amount of entanglement between the system and its environment.Quanta 2022; 11: 1–4.","PeriodicalId":37613,"journal":{"name":"Quanta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jordan in The Church of The Higher Hilbert Space: Entanglement and Thermal Fluctuations\",\"authors\":\"V. Vedral\",\"doi\":\"10.12743/quanta.v11i1.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I revisit Jordan's derivation of Einstein's formula for energy fluctuations in the black body in thermal equilibrium. This formula is usually taken to represent the unification of the wave and the particle aspects of the electromagnetic field since the fluctuations can be shown to be the sum of wave-like and particle-like contributions. However, in Jordan's treatment there is no mention of the Planck distribution and all averages are performed with respect to pure number states of radiation (mixed states had not yet been discovered!). The chief reason why Jordan does reproduce Einstein's result despite not using thermal states of radiation is that he focuses on fluctuations in a small (compared to the whole) volume of the black body. The state of radiation in a small volume is highly entangled to the rest of the black body which leads to the correct fluctuations even though the overall state might, in fact, be assumed to be pure (i.e. at zero temperature). I present a simple derivation of the fluctuations formula as an instance of mixed states being reductions of higher level pure states, a representation that is affectionately known as \\\"Church of the Higher Hilbert Space\\\". According to this view of mixed states, temperature is nothing but the amount of entanglement between the system and its environment.Quanta 2022; 11: 1–4.\",\"PeriodicalId\":37613,\"journal\":{\"name\":\"Quanta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quanta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12743/quanta.v11i1.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quanta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12743/quanta.v11i1.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Jordan in The Church of The Higher Hilbert Space: Entanglement and Thermal Fluctuations
I revisit Jordan's derivation of Einstein's formula for energy fluctuations in the black body in thermal equilibrium. This formula is usually taken to represent the unification of the wave and the particle aspects of the electromagnetic field since the fluctuations can be shown to be the sum of wave-like and particle-like contributions. However, in Jordan's treatment there is no mention of the Planck distribution and all averages are performed with respect to pure number states of radiation (mixed states had not yet been discovered!). The chief reason why Jordan does reproduce Einstein's result despite not using thermal states of radiation is that he focuses on fluctuations in a small (compared to the whole) volume of the black body. The state of radiation in a small volume is highly entangled to the rest of the black body which leads to the correct fluctuations even though the overall state might, in fact, be assumed to be pure (i.e. at zero temperature). I present a simple derivation of the fluctuations formula as an instance of mixed states being reductions of higher level pure states, a representation that is affectionately known as "Church of the Higher Hilbert Space". According to this view of mixed states, temperature is nothing but the amount of entanglement between the system and its environment.Quanta 2022; 11: 1–4.
QuantaArts and Humanities-History and Philosophy of Science
CiteScore
1.30
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊介绍:
Quanta is an open access academic journal publishing original research and review articles on foundations of quantum mechanics, mathematical physics and philosophy of science.