{"title":"为一种潮汐池鞭毛藻建立了一个新属Chiharadinium gen. 11 (Peridiniales, Dinophyceae),该鞭毛藻以前被称为Scrippsiella hexapraecingula","authors":"Mahmutjan Dawut, Aika Yamaguchi, T. Horiguchi","doi":"10.1111/pre.12513","DOIUrl":null,"url":null,"abstract":"To determine its accurate taxonomic position, a tidal pool bloom‐forming dinoflagellate, Scrippsiella hexapraecingula was re‐investigated using light, scanning and transmission electron microscopy together with a phylogenetic analysis based on concatenated ribosomal DNA sequences. The culture strains used in this study were established from intertidal rock pool samples taken from Jogashima, Kanagawa prefecture and Heisaura, Chiba prefecture, Japan and were identified as S. hexapraecingula originally described by Horiguchi and Chihara from a tidal pool in Hachijo Island, Tokyo, Japan in 1983. The thecal plate arrangement was determined as Po, X, 4′, 3a, 6″, 6c, 5s, 5″′, 2″″. The internal structure was investigated for the first time. The organism has typical dinoflagellate cellular organelles such as a dinokaryotic nucleus, mitochondria with tubular cristae, trichocysts and pusule. The chloroplast was single and connected to the central pyrenoid (stalked type). The eyespot found in the sulcus is of the B type with two rows of superficial intraplastidal lipid globules directly overlain by an extraplastidal single layer of crystalline bricks enveloped by a common membrane. The apical pore is plugged by a double‐layered stub‐like structure. Stalk building material for attachment covered the apical pore. Phylogenetic analysis indicated that S. hexapraecingula was most closely related to a freshwater dinoflagellate, Peridiniopsis borgei, the type species of the genus Peridiniopsis. However, clear differences exist between these two organisms, including their thecal plate arrangement, habitat and habit. As a result, a new genus, Chiharadinium Dawut & T. Horiguchi gen. nov. has been proposed rather than attempting to accommodate S. hexapraecingula in the genus Peridiniopsis. The new combination, Chiharadinium hexapraecingulum (T. Horiguchi & Chihara) Dawut & T. Horiguchi comb. nov. has been proposed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a new genus, Chiharadinium gen. nov. (Peridiniales, Dinophyceae) for a tidal pool dinoflagellate formerly known as Scrippsiella hexapraecingula\",\"authors\":\"Mahmutjan Dawut, Aika Yamaguchi, T. Horiguchi\",\"doi\":\"10.1111/pre.12513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To determine its accurate taxonomic position, a tidal pool bloom‐forming dinoflagellate, Scrippsiella hexapraecingula was re‐investigated using light, scanning and transmission electron microscopy together with a phylogenetic analysis based on concatenated ribosomal DNA sequences. The culture strains used in this study were established from intertidal rock pool samples taken from Jogashima, Kanagawa prefecture and Heisaura, Chiba prefecture, Japan and were identified as S. hexapraecingula originally described by Horiguchi and Chihara from a tidal pool in Hachijo Island, Tokyo, Japan in 1983. The thecal plate arrangement was determined as Po, X, 4′, 3a, 6″, 6c, 5s, 5″′, 2″″. The internal structure was investigated for the first time. The organism has typical dinoflagellate cellular organelles such as a dinokaryotic nucleus, mitochondria with tubular cristae, trichocysts and pusule. The chloroplast was single and connected to the central pyrenoid (stalked type). The eyespot found in the sulcus is of the B type with two rows of superficial intraplastidal lipid globules directly overlain by an extraplastidal single layer of crystalline bricks enveloped by a common membrane. The apical pore is plugged by a double‐layered stub‐like structure. Stalk building material for attachment covered the apical pore. Phylogenetic analysis indicated that S. hexapraecingula was most closely related to a freshwater dinoflagellate, Peridiniopsis borgei, the type species of the genus Peridiniopsis. However, clear differences exist between these two organisms, including their thecal plate arrangement, habitat and habit. As a result, a new genus, Chiharadinium Dawut & T. Horiguchi gen. nov. has been proposed rather than attempting to accommodate S. hexapraecingula in the genus Peridiniopsis. The new combination, Chiharadinium hexapraecingulum (T. Horiguchi & Chihara) Dawut & T. Horiguchi comb. nov. has been proposed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/pre.12513\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/pre.12513","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Establishing a new genus, Chiharadinium gen. nov. (Peridiniales, Dinophyceae) for a tidal pool dinoflagellate formerly known as Scrippsiella hexapraecingula
To determine its accurate taxonomic position, a tidal pool bloom‐forming dinoflagellate, Scrippsiella hexapraecingula was re‐investigated using light, scanning and transmission electron microscopy together with a phylogenetic analysis based on concatenated ribosomal DNA sequences. The culture strains used in this study were established from intertidal rock pool samples taken from Jogashima, Kanagawa prefecture and Heisaura, Chiba prefecture, Japan and were identified as S. hexapraecingula originally described by Horiguchi and Chihara from a tidal pool in Hachijo Island, Tokyo, Japan in 1983. The thecal plate arrangement was determined as Po, X, 4′, 3a, 6″, 6c, 5s, 5″′, 2″″. The internal structure was investigated for the first time. The organism has typical dinoflagellate cellular organelles such as a dinokaryotic nucleus, mitochondria with tubular cristae, trichocysts and pusule. The chloroplast was single and connected to the central pyrenoid (stalked type). The eyespot found in the sulcus is of the B type with two rows of superficial intraplastidal lipid globules directly overlain by an extraplastidal single layer of crystalline bricks enveloped by a common membrane. The apical pore is plugged by a double‐layered stub‐like structure. Stalk building material for attachment covered the apical pore. Phylogenetic analysis indicated that S. hexapraecingula was most closely related to a freshwater dinoflagellate, Peridiniopsis borgei, the type species of the genus Peridiniopsis. However, clear differences exist between these two organisms, including their thecal plate arrangement, habitat and habit. As a result, a new genus, Chiharadinium Dawut & T. Horiguchi gen. nov. has been proposed rather than attempting to accommodate S. hexapraecingula in the genus Peridiniopsis. The new combination, Chiharadinium hexapraecingulum (T. Horiguchi & Chihara) Dawut & T. Horiguchi comb. nov. has been proposed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.