自回归空间相互作用模型的广义影响计算

IF 3.3 3区 地球科学 Q1 GEOGRAPHY
Thibault Laurent, Paula Margaretic, Christine Thomas-Agnan
{"title":"自回归空间相互作用模型的广义影响计算","authors":"Thibault Laurent,&nbsp;Paula Margaretic,&nbsp;Christine Thomas-Agnan","doi":"10.1111/gean.12358","DOIUrl":null,"url":null,"abstract":"<p>We extend the impact decomposition proposed by LeSage and Thomas-Agnan (2015) in the spatial interaction model to a more general framework, where the sets of origins and destinations can be different, and where the relevant attributes characterizing the origins do not coincide with those of the destinations. These extensions result in three flow data configurations which we study extensively: the square, the rectangular, and the noncartesian cases. We propose numerical simplifications to compute the impacts, avoiding the inversion of a large filter matrix. These simplifications considerably reduce computation time; they can also be useful for prediction. Furthermore, we define local measures for the intra, origin, destination and network effects. Interestingly, these local measures can be aggregated at different levels of analysis. Finally, we illustrate our methodology in a case study using remittance flows all over the world.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"55 4","pages":"728-758"},"PeriodicalIF":3.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizing Impact Computations for the Autoregressive Spatial Interaction Model\",\"authors\":\"Thibault Laurent,&nbsp;Paula Margaretic,&nbsp;Christine Thomas-Agnan\",\"doi\":\"10.1111/gean.12358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend the impact decomposition proposed by LeSage and Thomas-Agnan (2015) in the spatial interaction model to a more general framework, where the sets of origins and destinations can be different, and where the relevant attributes characterizing the origins do not coincide with those of the destinations. These extensions result in three flow data configurations which we study extensively: the square, the rectangular, and the noncartesian cases. We propose numerical simplifications to compute the impacts, avoiding the inversion of a large filter matrix. These simplifications considerably reduce computation time; they can also be useful for prediction. Furthermore, we define local measures for the intra, origin, destination and network effects. Interestingly, these local measures can be aggregated at different levels of analysis. Finally, we illustrate our methodology in a case study using remittance flows all over the world.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"55 4\",\"pages\":\"728-758\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12358\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12358","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

我们将LeSage和Thomas-Agnan(2015)在空间交互模型中提出的影响分解扩展到一个更一般的框架,在这个框架中,原点和目的地的集合可以不同,并且表征原点的相关属性与目的地的相关属性不一致。这些扩展导致了我们广泛研究的三种流动数据配置:方形,矩形和非笛卡尔情况。我们提出了数值简化来计算影响,避免了一个大的滤波器矩阵的反演。这些简化大大减少了计算时间;它们也可以用于预测。此外,我们定义了内部、起源、目的地和网络效应的本地度量。有趣的是,这些局部度量可以在不同的分析级别上进行汇总。最后,我们在一个使用世界各地汇款流量的案例研究中说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizing Impact Computations for the Autoregressive Spatial Interaction Model

We extend the impact decomposition proposed by LeSage and Thomas-Agnan (2015) in the spatial interaction model to a more general framework, where the sets of origins and destinations can be different, and where the relevant attributes characterizing the origins do not coincide with those of the destinations. These extensions result in three flow data configurations which we study extensively: the square, the rectangular, and the noncartesian cases. We propose numerical simplifications to compute the impacts, avoiding the inversion of a large filter matrix. These simplifications considerably reduce computation time; they can also be useful for prediction. Furthermore, we define local measures for the intra, origin, destination and network effects. Interestingly, these local measures can be aggregated at different levels of analysis. Finally, we illustrate our methodology in a case study using remittance flows all over the world.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信