完备度量空间中凸压缩映射的一些不动点定理及其应用

IF 0.1 Q4 MATHEMATICS
K. Eke, V. Olisama, S. Bishop
{"title":"完备度量空间中凸压缩映射的一些不动点定理及其应用","authors":"K. Eke, V. Olisama, S. Bishop","doi":"10.1080/25742558.2019.1655870","DOIUrl":null,"url":null,"abstract":"Abstract In this research work, convexity condition is introduced to some classes of contraction mappings such as Chatterjea and Hardy and Rogers contractive mappings. The fixed points of these maps are proved in complete metric spaces. Example is equally provided to support the main result. The unique solution of nonlinear Fredholm integral equation is obtained via the Hardy and Rogers convex contraction mappings of type 2. The results obtained in this paper, extend and generalize some related works in the literature.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2019.1655870","citationCount":"6","resultStr":"{\"title\":\"Some fixed point theorems for convex contractive mappings in complete metric spaces with applications\",\"authors\":\"K. Eke, V. Olisama, S. Bishop\",\"doi\":\"10.1080/25742558.2019.1655870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this research work, convexity condition is introduced to some classes of contraction mappings such as Chatterjea and Hardy and Rogers contractive mappings. The fixed points of these maps are proved in complete metric spaces. Example is equally provided to support the main result. The unique solution of nonlinear Fredholm integral equation is obtained via the Hardy and Rogers convex contraction mappings of type 2. The results obtained in this paper, extend and generalize some related works in the literature.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2019.1655870\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2019.1655870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2019.1655870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文将凸性条件引入到几类压缩映射中,如Chatterjea和Hardy以及Rogers压缩映射。这些映射的不动点是在完备度量空间中证明的。同样提供了示例来支持主要结果。通过2型Hardy和Rogers凸收缩映射,得到了非线性Fredholm积分方程的唯一解。本文的研究结果对文献中的一些相关工作进行了扩展和概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some fixed point theorems for convex contractive mappings in complete metric spaces with applications
Abstract In this research work, convexity condition is introduced to some classes of contraction mappings such as Chatterjea and Hardy and Rogers contractive mappings. The fixed points of these maps are proved in complete metric spaces. Example is equally provided to support the main result. The unique solution of nonlinear Fredholm integral equation is obtained via the Hardy and Rogers convex contraction mappings of type 2. The results obtained in this paper, extend and generalize some related works in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信