齐次随机分形的平均Lipschitz-杀戮曲率

IF 1.1 4区 数学 Q1 MATHEMATICS
J. Rataj, S. Winter, M. Zahle
{"title":"齐次随机分形的平均Lipschitz-杀戮曲率","authors":"J. Rataj, S. Winter, M. Zahle","doi":"10.4171/jfg/124","DOIUrl":null,"url":null,"abstract":"Homogeneous random fractals form a probabilistic extension of self-similar sets with more dependencies than in random recursive constructions. For such random fractals we consider mean values of the Lipschitz-Killing curvatures of their parallel sets for small parallel radii. Under the Uniform Strong Open Set Condition and some further geometric assumptions we show that rescaled limits of these mean values exist as the parallel radius tends to zero. Moreover, integral representations are derived for these limits which extend those known in the deterministic case.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mean Lipschitz--Killing curvatures for homogeneous random fractals\",\"authors\":\"J. Rataj, S. Winter, M. Zahle\",\"doi\":\"10.4171/jfg/124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homogeneous random fractals form a probabilistic extension of self-similar sets with more dependencies than in random recursive constructions. For such random fractals we consider mean values of the Lipschitz-Killing curvatures of their parallel sets for small parallel radii. Under the Uniform Strong Open Set Condition and some further geometric assumptions we show that rescaled limits of these mean values exist as the parallel radius tends to zero. Moreover, integral representations are derived for these limits which extend those known in the deterministic case.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/124\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/124","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

齐次随机分形是自相似集的概率扩展,具有比随机递归结构更多的依赖关系。对于这类随机分形,我们考虑了它们的平行集在小平行半径下的Lipschitz-Killing曲率的平均值。在一致强开集条件和一些进一步的几何假设下,我们证明了当平行半径趋于零时,这些平均值的重标极限存在。此外,导出了这些极限的积分表示,扩展了确定性情况下已知的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Lipschitz--Killing curvatures for homogeneous random fractals
Homogeneous random fractals form a probabilistic extension of self-similar sets with more dependencies than in random recursive constructions. For such random fractals we consider mean values of the Lipschitz-Killing curvatures of their parallel sets for small parallel radii. Under the Uniform Strong Open Set Condition and some further geometric assumptions we show that rescaled limits of these mean values exist as the parallel radius tends to zero. Moreover, integral representations are derived for these limits which extend those known in the deterministic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信