Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Y. Okamoto, K. Ozeki
{"title":"单调边向Nash-Williams最大边连通性的方向翻转","authors":"Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Y. Okamoto, K. Ozeki","doi":"10.1145/3561302","DOIUrl":null,"url":null,"abstract":"We initiate the study of k-edge-connected orientations of undirected graphs through edge flips for k ≥ 2. We prove that in every orientation of an undirected 2k-edge-connected graph, there exists a sequence of edges such that flipping their directions one by one does not decrease the edge connectivity, and the final orientation is k-edge connected. This yields an “edge-flip based” new proof of Nash-Williams’ theorem: A undirected graph G has a k-edge-connected orientation if and only if G is 2k-edge connected. As another consequence of the theorem, we prove that the edge-flip graph of k-edge-connected orientations of an undirected graph G is connected if G is (2k+2)-edge connected. This has been known to be true only when k=1.","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"19 1","pages":"1 - 22"},"PeriodicalIF":0.9000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Monotone Edge Flips to an Orientation of Maximum Edge-Connectivity à la Nash-Williams\",\"authors\":\"Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Y. Okamoto, K. Ozeki\",\"doi\":\"10.1145/3561302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate the study of k-edge-connected orientations of undirected graphs through edge flips for k ≥ 2. We prove that in every orientation of an undirected 2k-edge-connected graph, there exists a sequence of edges such that flipping their directions one by one does not decrease the edge connectivity, and the final orientation is k-edge connected. This yields an “edge-flip based” new proof of Nash-Williams’ theorem: A undirected graph G has a k-edge-connected orientation if and only if G is 2k-edge connected. As another consequence of the theorem, we prove that the edge-flip graph of k-edge-connected orientations of an undirected graph G is connected if G is (2k+2)-edge connected. This has been known to be true only when k=1.\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"19 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3561302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3561302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Monotone Edge Flips to an Orientation of Maximum Edge-Connectivity à la Nash-Williams
We initiate the study of k-edge-connected orientations of undirected graphs through edge flips for k ≥ 2. We prove that in every orientation of an undirected 2k-edge-connected graph, there exists a sequence of edges such that flipping their directions one by one does not decrease the edge connectivity, and the final orientation is k-edge connected. This yields an “edge-flip based” new proof of Nash-Williams’ theorem: A undirected graph G has a k-edge-connected orientation if and only if G is 2k-edge connected. As another consequence of the theorem, we prove that the edge-flip graph of k-edge-connected orientations of an undirected graph G is connected if G is (2k+2)-edge connected. This has been known to be true only when k=1.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing