{"title":"硅灰固定化细菌细胞对钢筋混凝土的缓蚀作用","authors":"K. Anand, S. Goyal, M. Reddy","doi":"10.1080/21650373.2023.2223209","DOIUrl":null,"url":null,"abstract":"Recently, microbially induced calcium carbonate precipitation (MICCP) has been considered a novel method in corrosion prevention of reinforced concrete (RC) at the lab scale. In this investigation, silica fume (SF) based inoculum for the construction industry was developed and possessed a shelf life of 180 days with an effective cell count required to induce MICCP in RC structures. The SF-based inoculum was immobilized in fresh concrete to study the corrosion mitigation potential. The RC specimens were cured for 28 days and subjected to impressed current-induced chloride corrosion. Electrochemical and electromechanical impedance (EMI) techniques were employed separately on RC specimens for corrosion assessment. The results prove that the SF-based carrier can be effectively used for corrosion prevention and that the emerging EMI technique can efficiently monitor the corrosion process.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"1414 - 1429"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion inhibition in reinforced concrete using silica fume immobilized bacterial cells\",\"authors\":\"K. Anand, S. Goyal, M. Reddy\",\"doi\":\"10.1080/21650373.2023.2223209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, microbially induced calcium carbonate precipitation (MICCP) has been considered a novel method in corrosion prevention of reinforced concrete (RC) at the lab scale. In this investigation, silica fume (SF) based inoculum for the construction industry was developed and possessed a shelf life of 180 days with an effective cell count required to induce MICCP in RC structures. The SF-based inoculum was immobilized in fresh concrete to study the corrosion mitigation potential. The RC specimens were cured for 28 days and subjected to impressed current-induced chloride corrosion. Electrochemical and electromechanical impedance (EMI) techniques were employed separately on RC specimens for corrosion assessment. The results prove that the SF-based carrier can be effectively used for corrosion prevention and that the emerging EMI technique can efficiently monitor the corrosion process.\",\"PeriodicalId\":48521,\"journal\":{\"name\":\"Journal of Sustainable Cement-Based Materials\",\"volume\":\"12 1\",\"pages\":\"1414 - 1429\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Cement-Based Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21650373.2023.2223209\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2223209","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Corrosion inhibition in reinforced concrete using silica fume immobilized bacterial cells
Recently, microbially induced calcium carbonate precipitation (MICCP) has been considered a novel method in corrosion prevention of reinforced concrete (RC) at the lab scale. In this investigation, silica fume (SF) based inoculum for the construction industry was developed and possessed a shelf life of 180 days with an effective cell count required to induce MICCP in RC structures. The SF-based inoculum was immobilized in fresh concrete to study the corrosion mitigation potential. The RC specimens were cured for 28 days and subjected to impressed current-induced chloride corrosion. Electrochemical and electromechanical impedance (EMI) techniques were employed separately on RC specimens for corrosion assessment. The results prove that the SF-based carrier can be effectively used for corrosion prevention and that the emerging EMI technique can efficiently monitor the corrosion process.
期刊介绍:
The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management