{"title":"变指数集的poincar<s:1>不等式和Neumann问题","authors":"D. Cruz-Uribe, Michael Penrod, S. Rodney","doi":"10.3934/mine.2022036","DOIUrl":null,"url":null,"abstract":"In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poincaré inequalities and Neumann problems for the variable exponent setting\",\"authors\":\"D. Cruz-Uribe, Michael Penrod, S. Rodney\",\"doi\":\"10.3934/mine.2022036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\\\\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2022036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2022036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
摘要
在较早的一篇论文中,Cruz-Uribe, Rodney和Rosta证明了加权poincar不等式与一类退化的$ p $-拉普拉斯算子相关的Neumann问题弱解的存在性之间的等价性。本文证明了变指数空间中的poincar不等式与退化的$ {p(\cdot)} $-拉普拉斯方程解之间的类似等价性,这是一个具有非标准生长条件的非线性椭圆方程。
Poincaré inequalities and Neumann problems for the variable exponent setting
In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.